YOMEDIA
NONE

\(A\left( { - 1;1} \right)\) và \(B\left( {2;4} \right)\) là hai điểm của parabol \(y = {x^2}\). Xác định điểm \(C\) thuộc parabol sao cho tiếp tuyến tại \(C\) với parabol song song với đường thẳng \(AB\).

\(A\left( { - 1;1} \right)\) và \(B\left( {2;4} \right)\) là hai điểm của parabol \(y = {x^2}\). Xác định điểm \(C\) thuộc parabol sao cho tiếp tuyến tại \(C\) với parabol song song với đường thẳng \(AB\).  

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có: \(\overrightarrow {AB}  = \left( {3;3} \right)\) nên \(\overrightarrow {{n_{AB}}}  = \left( {1; - 1} \right)\) là VTPT của \(AB\).

    \( \Rightarrow AB:1\left( {x + 1} \right) - 1\left( {y - 1} \right) = 0\) hay \(x - y + 2 = 0 \Leftrightarrow y = x + 2\)

    Do đó \(AB:y = x + 2\) có hsg \({k_{AB}} = 1\)

    Ta có: \(y' = 2x\).

    Gọi \(C\left( {{x_0};{y_0}} \right)\) là tiếp điểm.

    Tiếp tuyến tại \(C\) song song với \(AB\) nên \(y'\left( {{x_0}} \right) = {k_{AB}}\)

    \(\begin{array}{l} \Leftrightarrow 2{x_0} = 1 \Leftrightarrow {x_0} = \dfrac{1}{2}\\ \Rightarrow {y_0} = {\left( {\dfrac{1}{2}} \right)^2} = \dfrac{1}{4}\\ \Rightarrow C\left( {\dfrac{1}{2};\frac{1}{4}} \right)\end{array}\)

    Vậy \(C\left( {\dfrac{1}{2};\dfrac{1}{4}} \right)\).

      bởi Mai Linh 03/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON