-
Câu hỏi:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, cạnh AB=a, BC=2a chiều cao \(SA = a\sqrt 6 .\) Tính thể tích V của khối chóp.
Ta có: \(AC = \sqrt {B{C^2} - A{B^2}} = \sqrt {4{a^2} - {a^2}} = a\sqrt 3 .\)
\(\Rightarrow {V_{S.ABC}} = \frac{1}{3}.SA.{S_{ABC}} = \frac{1}{3}a\sqrt 6 .\frac{1}{2}a.a\sqrt 3 = \frac{{{a^3}\sqrt 2 }}{2}.\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ TÍNH THỂ TÍCH KHỐI ĐA DIỆN BẰNG CÁCH TRỰC TIẾP
- Tính theo a thể tích V của khối chóp S.ABCD có đáy ABCD là hình chữ nhật có AB=a, AC=5a. Hai mặt bên (SAB) và (SAD) cùng vuông góc với đáy
- Tính thể tích V của khối lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a Hình chiếu của đỉnh A’ lên mặt phẳng đáy trùng với trung điểm H của cạnh BC.
- Tính thể tích V của khối lăng trụ có tất cả các cạnh đều bằng a, đáy là lục giác đều, góc tạo bởi cạnh bên và mặt đáy là 600
- Tính thể tích V của khối chóp S.ABCcó SA vuông góc (ABC), SA=2a và tam giác ABC đều cạnh a
- Tính thể tích V của khối lăng trụ đứng ABCD.A’B’C’D’ có (AB=asqrt{5}) đáy ABCD là hình vuông cạnh a
- ính thể tích V của khối lăng trụ đứng ABC.A’B’C’ có A’B=2a, đáy ABC là tam giác đều, góc giữa đường thẳng A’B và mặt đáy bằng 60 độ
- ính thể tích V của khối chóp S.ABCD có đáy là hình chữ nhật với AB=2a, AD=a. Hình chiếu của S lên mặt phẳng (ABCD) là trung điểm H của AB, SC tạo với đáy một góc 45 độ
- Tính tỉ số thể tích của hình tứ diện đều và hình bát diện đều cùng có cạnh bằng a.
- Cho khối chóp S.ABC có đáy là tam giác vuông cân tại A và AB = AC = asqrt 2. Tam giác SBC có diện tích bằng 2{a^2} và nằm trong mặt phẳng vuông góc với mặt đáy.
- Tính thể tích của khối lăng trụ đứng ABC.A’B’C’có cạnh BC=2a, góc giữa hai mặt phẳng (ABC) và (A’BC) bằng 60 độ