YOMEDIA
NONE
  • Câu hỏi:

    Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = {x^3} - 3{x^2} + m có hai cực trị nằm ở hai nửa mặt phẳng khác nhau với bờ là trục hoành.

    • A. 0 < m < 2
    • B.  m < 0
    • C. m > 2
    • D. 0 < m < 4

    Đáp án đúng: D

    Ta có:

    \(\begin{array}{l} y' = 3{x^2} - 6x\\ y' = 0 \Leftrightarrow 3{x^2} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 2 \end{array} \right. \end{array}\)

    Vậy đồ thị hàm số luôn có cực đại và cực tiểu tại hai điểm \({M_1}\left( {0;m} \right),\,{M_2}\left( {2;m - 4} \right)\).

    Để đồ thị hàm số hai điểm cực trị nằm ở hai nửa mặt phẳng khác nhau với bờ là trục hoành thì giá trị cực đại và giá trị cực tiểu của hàm số phải trái dấu nhau hay: \(m.(m - 4) < 0 \Leftrightarrow 0 < m < 4\).

    YOMEDIA
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC VỀ CỰC TRỊ CỦA HÀM SỐ

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON