-
Câu hỏi:
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số có hai cực trị nằm ở hai nửa mặt phẳng khác nhau với bờ là trục hoành.
- A. 0 < m < 2
- B. m < 0
- C. m > 2
- D. 0 < m < 4
Đáp án đúng: D
Ta có:
\(\begin{array}{l} y' = 3{x^2} - 6x\\ y' = 0 \Leftrightarrow 3{x^2} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 2 \end{array} \right. \end{array}\)
Vậy đồ thị hàm số luôn có cực đại và cực tiểu tại hai điểm \({M_1}\left( {0;m} \right),\,{M_2}\left( {2;m - 4} \right)\).
Để đồ thị hàm số hai điểm cực trị nằm ở hai nửa mặt phẳng khác nhau với bờ là trục hoành thì giá trị cực đại và giá trị cực tiểu của hàm số phải trái dấu nhau hay: \(m.(m - 4) < 0 \Leftrightarrow 0 < m < 4\).
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ CỰC TRỊ CỦA HÀM SỐ
- Cho đồ thị hàm số y=ax^4+bx^3+c đạt cực đại tại A(0;3) và cực tiểu B(-1;-5) tính P=a+2b+3c
- Tìm khẳng định đúng về cực trị của hàm số y=2x^4+4x^2-3
- Đồ thị hàm số y=-x^3+3x^2-3x+1 có bao nhiêu điểm cực trị
- Tìm khẳng định đúng về cực trị của hàm số y=f(x) có bảng biến thiên cho trước
- Hàm số f(x) có bao nhiêu điểm cực trị biết f'(x)=x^4(x-1)(2-x)^3(x-4)^2
- Tìm m để đồ thị hàm số y=-2x^4+(m+3)x^2+5 có duy nhất một điểm cực trị
- Tìm m để đồ thị hàm số y = {x^4} + 2(m - 4){x^2} + m + 5 có ba điểm cực trị tạo thành một tam giác nhận gốc tọa độ O(0;0) là trọng tâm
- Tìm m để hàm số y=x^3-3x^2+3(m^2-1)x đạt cực tiểu tại x=2
- Tìm giá trị cực đại {y_{CD}} của hàm số y = {x^3} - 3x + 2
- Đồ thị hàm số y=(x^2-4x+1)/(x+1) có hai điểm cực trị thuộc đường thẳng y=ax+b