-
Câu hỏi:
Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường xung quanh trục Ox được tính theo công thức nào sau đây?
- A.
- B.
- C.
- D.
Đáp án đúng: D
Kí hiệu là hình phẳng giới hạn bởi các đường
Kí hiệu là hình phẳng giới hạn bởi các đường
Khi đó thể tích V cần tính chính bằng thể tích của khối tròn xoay thu được khi quay hình xung quanh trục Ox cộng với thể tích của khối tròn xoay thu được khi quay hình xung quanh trục Ox.
Ta có và
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ ỨNG DỤNG CỦA TÍCH PHÂN VÀ NGUYÊN HÀM
- Nếu đặt trong hệ tọa độ Oxy như hình vẽ bên thì parabol có phương trình y = {x^2} và đường thẳng là y = 25. Ông B dự định dùng một mảnh vườn nhỏ được chia từ khu vườn bởi đường thẳng đi qua O và điểm M trên parabol để trồng hoa
- Bạn có một cốc thủy tinh hình trụ, đường kính trong lòng đáy cốc là 6 cm chiều cao trong lòng cốc là 10 cm đang đựng một lượng nước. Bạn A nghiêng cốc nước, vừa lúc khi nước chạm miệng cốc thì ở đáy mực nước trùng với đường kính đáy
- Tính diện tích S của hình phẳng giới hạn bởi đồ thị các hàm số y = {x^2} - 2x + 3 và y = 3
- Ô tô chuyển động chậm dần đều với gia tốc ( - aleft( {m/{s^2}} ight)). Biết ô tô chuyển động thêm được 20m thì dừng hẳn
- Người ta thay nước mới cho một bể bơi dạng hình hộp chữ nhật có độ sâu {h_1} = 280 cm. Giả sử h(t) là chiều cao của mực nước bơm được tại thời điểm t giây, bết rằng tốc độ tăng của chiều cao nước tại giây thứ t là h'(t)=1/500(sqrt[3](t+3))
- Tính diện tích S của hình phẳng giới hạn bởi hai đường y=|x^2-4x+3| và x=-1
- Diện tích hình phẳng giới hạn bởi đồ thị y = {x^3} - 3{x}^2} + 2x trục hoành, trục tung và đường thẳng x = 3 là:
- Thể tích khối tròn xoay khi quay quanh trục hoành phần hình phẳng giới hạn bởi 2 đường y = {x^2} và y = sqrt x là:
- Cho hai hàm số y=f_1(x) và y=f_2(x) liên tục trên đoạn [a;b] và có đồ thị như hình vẽ bên. Gọi S là hình phẳng giới hạn bởi hai đồ thị trên và các đường thẳng x=a, x=b
- Tính diện tích S của hình phẳng giới hạn bởi đồ thị của hai hàm số y = {x^2} - 4) và (y = x - 4