-
Câu hỏi:
Một ô tô đang chạy đều với vận tốc 15 (m/s) thì phía trước xuất hiện chướng ngại vật nên người lái đạp phanh gấp. Kể từ thời điểm đó, ô tô chuyển động chậm dần đều với gia tốc \( - a\left( {m/{s^2}} \right)\). Biết ô tô chuyển động thêm được 20m thì dừng hẳn. Hỏi a thuộc khoảng nào dưới đây?
- A. \(\left( {3;4} \right)\)
- B. \(\left( {4;5} \right)\)
- C. \(\left( {5;6} \right)\)
- D. \(\left( {6;7} \right)\)
Đáp án đúng: C
Ta có \(v\left( t \right) = 15 - a.t\left( {m/s} \right) \Rightarrow v\left( t \right) = 0 \Leftrightarrow 15 - a.t = 0 \Leftrightarrow t = \frac{{15}}{a}\left( s \right)\)
Ô tô đi được thêm được 20m, suy ra \(\int\limits_0^{\frac{a}{{15}}} {v\left( t \right)dt = 20 \Leftrightarrow \int\limits_0^{\frac{{15}}{a}} {\left( {15 - a.t} \right)} dt = 20 \Leftrightarrow \left( {15t - \frac{1}{2}a.{t^2}} \right)\left| {\begin{array}{*{20}{c}}{\frac{{15}}{a}}\\0\end{array}} \right.} = 20\) \( \Leftrightarrow 15\frac{{15}}{a} - \frac{1}{2}a.\frac{{{{15}^2}}}{{{a^2}}} = 20\) \( \Leftrightarrow \frac{{225}}{a} - \frac{{225}}{{2a}} = 20 \Leftrightarrow a = 5,625\left( {m/{s^2}} \right) \Rightarrow a \in \left( {5;6} \right).\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ ỨNG DỤNG CỦA TÍCH PHÂN VÀ NGUYÊN HÀM
- Người ta thay nước mới cho một bể bơi dạng hình hộp chữ nhật có độ sâu {h_1} = 280 cm. Giả sử h(t) là chiều cao của mực nước bơm được tại thời điểm t giây, bết rằng tốc độ tăng của chiều cao nước tại giây thứ t là h'(t)=1/500(sqrt[3](t+3))
- Tính diện tích S của hình phẳng giới hạn bởi hai đường y=|x^2-4x+3| và x=-1
- Diện tích hình phẳng giới hạn bởi đồ thị y = {x^3} - 3{x}^2} + 2x trục hoành, trục tung và đường thẳng x = 3 là:
- Thể tích khối tròn xoay khi quay quanh trục hoành phần hình phẳng giới hạn bởi 2 đường y = {x^2} và y = sqrt x là:
- Cho hai hàm số y=f_1(x) và y=f_2(x) liên tục trên đoạn [a;b] và có đồ thị như hình vẽ bên. Gọi S là hình phẳng giới hạn bởi hai đồ thị trên và các đường thẳng x=a, x=b
- Tính diện tích S của hình phẳng giới hạn bởi đồ thị của hai hàm số y = {x^2} - 4) và (y = x - 4
- Cho hàm số y=x4−3x2+m (Cm), với m là tham số thực giả sử (Cm) cắt trục Ox tại bốn điểm phân biệt như hình vẽ.
- Cho hình phẳng (H) giới hạn bởi các đường y = 4 - {x^2},y = 0. Tính thể tích V của khối tròn xoay hình thành khi cho (H) quay xung quanh Ox.
- Tính diện tích hình phẳng (H) giới hạn bởi các đường: Parabol (P): y=x^2−2x+2, tiếp tuyến của (P) tại M(3;5) và trục Oy.
- Tính thể tích V của khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi đồ thị hàm số y = fleft( x ight)