-
Câu hỏi:
Một ô tô đang chạy đều với vận tốc 15 (m/s) thì phía trước xuất hiện chướng ngại vật nên người lái đạp phanh gấp. Kể từ thời điểm đó, ô tô chuyển động chậm dần đều với gia tốc . Biết ô tô chuyển động thêm được 20m thì dừng hẳn. Hỏi a thuộc khoảng nào dưới đây?
- A.
- B.
- C.
- D.
Đáp án đúng: C
Ta có
Ô tô đi được thêm được 20m, suy ra
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ ỨNG DỤNG CỦA TÍCH PHÂN VÀ NGUYÊN HÀM
- Người ta thay nước mới cho một bể bơi dạng hình hộp chữ nhật có độ sâu {h_1} = 280 cm. Giả sử h(t) là chiều cao của mực nước bơm được tại thời điểm t giây, bết rằng tốc độ tăng của chiều cao nước tại giây thứ t là h'(t)=1/500(sqrt[3](t+3))
- Tính diện tích S của hình phẳng giới hạn bởi hai đường y=|x^2-4x+3| và x=-1
- Diện tích hình phẳng giới hạn bởi đồ thị y = {x^3} - 3{x}^2} + 2x trục hoành, trục tung và đường thẳng x = 3 là:
- Thể tích khối tròn xoay khi quay quanh trục hoành phần hình phẳng giới hạn bởi 2 đường y = {x^2} và y = sqrt x là:
- Cho hai hàm số y=f_1(x) và y=f_2(x) liên tục trên đoạn [a;b] và có đồ thị như hình vẽ bên. Gọi S là hình phẳng giới hạn bởi hai đồ thị trên và các đường thẳng x=a, x=b
- Tính diện tích S của hình phẳng giới hạn bởi đồ thị của hai hàm số y = {x^2} - 4) và (y = x - 4
- Cho hàm số y=x4−3x2+m (Cm), với m là tham số thực giả sử (Cm) cắt trục Ox tại bốn điểm phân biệt như hình vẽ.
- Cho hình phẳng (H) giới hạn bởi các đường y = 4 - {x^2},y = 0. Tính thể tích V của khối tròn xoay hình thành khi cho (H) quay xung quanh Ox.
- Tính diện tích hình phẳng (H) giới hạn bởi các đường: Parabol (P): y=x^2−2x+2, tiếp tuyến của (P) tại M(3;5) và trục Oy.
- Tính thể tích V của khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi đồ thị hàm số y = fleft( x ight)