YOMEDIA
NONE
  • Câu hỏi:

    Người ta thay nước mới cho một bể bơi dạng hình hộp chữ nhật có độ sâu \({h_1} = 280\,\,\,cm\). Giả sử \(h(t)\,\,cm\) là chiều cao của mực nước bơm được tại thời điểm \(t\) giây, bết rằng tốc độ tăng của chiều cao nước tại giây thứ \(t\) là \(h'(t) = \frac{1}{{500}}\sqrt[3]{{t + 3}}\) . Hỏi sau bao lâu thì nước bơm được \(\frac{3}{4}\) độ sâu của hồ bơi?​

    • A. \(7545,2\,s\).
    • B. \(7234,8\,s\).
    • C. \(7200,7\,s\).
    • D. \(7560,5\,s\). 

    Đáp án đúng: B

    Sau m giây mức nước của bể là:

    \(h(m)=\int_{0}^{m}h'(t)dt=\int_{0}^{m}\frac{1}{500}\sqrt[3]{t+3}dt =\frac{3\sqrt[3]{(t+3)^4}}{2000}\bigg|^m_0=\frac{3}{2000} \left [ \sqrt[3]{(m+3)^4}-3\sqrt[3]{3} \right ]\)

    Yêu cầu bài toán, ta có: \(\frac{3}{2000}\left [ \sqrt[3]{(m+3)^4}-3\sqrt[3]{3} \right ]=\frac{3}{4}.280\)

    Suy ra: \(\sqrt[3]{(m+3)^4}=140000+3\sqrt[3]{3} \Leftrightarrow \sqrt[4]{(140000+3\sqrt[3]{3})}-3=7234,8\)

    YOMEDIA
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC VỀ ỨNG DỤNG CỦA TÍCH PHÂN VÀ NGUYÊN HÀM

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON