-
Câu hỏi:
Tính diện tích S của hình phẳng giới hạn bởi đồ thị của hai hàm số \(y = {x^2} - 4\) và \(y = x - 4\)
- A. \(S = \frac{{43}}{6}\)
- B. \(S = \frac{{161}}{6}\)
- C. \(S = \frac{1}{6}\)
- D. \(S = \frac{5}{6}\)
Đáp án đúng: C
Xét phương trình: \({x^2} - 4 = x - 4 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 1}\end{array}} \right.\).
Trong khoảng \(\left( {0;1} \right)\) thì \({x^2} - x > 0\)
Diện tích cần tìm là: \(S = \int\limits_0^1 {\left| {{x^2} - 4 - x + 4} \right|dx} = \int\limits_0^1 {\left| {{x^2} - x} \right|} dx = - \int\limits_0^1 {\left( {{x^2} - x} \right)} dx = \frac{1}{6}\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ ỨNG DỤNG CỦA TÍCH PHÂN VÀ NGUYÊN HÀM
- Cho hàm số y=x4−3x2+m (Cm), với m là tham số thực giả sử (Cm) cắt trục Ox tại bốn điểm phân biệt như hình vẽ.
- Cho hình phẳng (H) giới hạn bởi các đường y = 4 - {x^2},y = 0. Tính thể tích V của khối tròn xoay hình thành khi cho (H) quay xung quanh Ox.
- Tính diện tích hình phẳng (H) giới hạn bởi các đường: Parabol (P): y=x^2−2x+2, tiếp tuyến của (P) tại M(3;5) và trục Oy.
- Tính thể tích V của khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi đồ thị hàm số y = fleft( x ight)
- Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số f(x)=x^2−4x+3 và trục Ox.
- Người ta dựng một cái lều vải (H) có dạng hình chóp lục giác đều như hình vẽ bên. Đáy của (H) là một hình lục giác đều có độ dài cạnh là 3m. Chiều cao SO=6m (SO vuông góc với mặt đáy).
- Cho hàm số y=f(x) có đạo hàm f′(x) liên tục trên R và đồ thị của hàm số f′(x) trên đoạn [−2;6] như hình vẽ bên.
- Bên trong hình vuông cạnh a, dựng hình sao cho bốn cạnh đều như hình vẽ bên. Tính thể tích khối tròn xoay sinh ra khi quay hình sao đó quanh Ox
- Trong mặt phẳng tọa độ, cho hình chữ nhật (H) có một cạnh nằm trên trục hoành, và có hai đỉnh trên một
- Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = left( {x - 1} ight){e^x}, trục Ox và đường thẳng x = 2