YOMEDIA
NONE
  • Câu hỏi:

    Cho hình chóp S.ABC, đáy là tam giác ABC có \(AB = a;\,AC = a\sqrt 2 \) và \(\widehat {CAB} = 135^\circ \), tam giác SAB vuông tại B và tam giác SAC vuông tại A. Biết góc giữa hai mặt phẳng (SAC) và (SAB) bằng 30o. Tính thể tích khối chóp S.ABC

    • A. \(\frac{{{a^3}}}{6}\)
    • B. \(\frac{{{a^3}}}{3}\)
    • C. \(\frac{{{a^3}\sqrt 6 }}{3}\)
    • D. \(\frac{{{a^3}\sqrt 6 }}{6}\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Gọi D là hình chiếu vuông góc của S xuống mặt phẳng (ABC).

    \(\left\{ \begin{array}{l} AB \bot SB\\ AB \bot SD \end{array} \right. \Rightarrow AB \bot \left( {SBD} \right) \Rightarrow AB \bot BD\)

    \(\left\{ \begin{array}{l} AC \bot SA\\ AC \bot SD \end{array} \right. \Rightarrow AC \bot \left( {SAD} \right) \Rightarrow AC \bot AD\,\)

    Tam giác ABC có \(\widehat {CAB} = 135^\circ \Rightarrow \widehat {BAD} = 45^\circ \).

    Tam giác ABD vuông tại B có \(\widehat {BAD} = 45^\circ \) suy ra tam giác ABD vuông cân và \(AD = a\sqrt 2 \).

    Từ đó có tam giác ACD vuông cân tại A ⇒ tứ giác ABCD là hình thang vuông tại B và D.

    Trong mặt phẳng (SBD), hạ \(DH \bot SB\,\,\left( {H \in SB} \right)\). Dễ chứng minh \(DH \bot \left( {SAB} \right)\).

    Trong mặt phẳng (SAD), hạ \(DK \bot SA\,\,\left( {K \in SA} \right)\). Dễ chứng minh \(DK \bot \left( {SAC} \right)\).

    Gọi \(\alpha\) là góc giữa hai mặt phẳng (SAB) và (SAC) ta có: \(\alpha = \widehat {\left( {DH,DK} \right)} = \widehat {HDK} = 30^\circ \) do tam giác DHK vuông tại H.

    Đặt SD = x, (x > 0). Tam giác DHK vuông tại H có

    \(\cos \widehat {HDK} = \frac{{HD}}{{DK}} \Rightarrow \frac{{\sqrt 3 }}{2} = \frac{{ax}}{{\sqrt {{a^2} + {x^2}} }}.\frac{{\sqrt {2{a^2} + {x^2}} }}{{\sqrt 2 .ax}}\)

    \( \Leftrightarrow \sqrt 6 \sqrt {{a^2} + {x^2}} = 2\sqrt {2{a^2} + {x^2}} \Leftrightarrow 6{a^2} + 6{x^2} = 8{a^2} + 4{x^2} \Leftrightarrow x = a\)

    \({V_{S.ABC}} = \frac{1}{6}.SD.AB.AC.\sin \widehat {BAC} = \frac{{{a^3}}}{6}\)

    Vậy thể tích khối S.ABC bằng \(\frac{{{a^3}}}{6}\).

    ATNETWORK

Mã câu hỏi: 203008

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON