YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số bậc bốn y = f(x) có đồ thị như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [0;20] sao cho giá trị nhỏ nhất của hàm số \(g\left( x \right) = \left| {\left| {2f\left( x \right) + m + 4} \right| - f(x) - 3} \right|\) trên đoạn [-2;2] không bé hơn 1?

    • A. 18
    • B. 19
    • C. 20
    • D. 21

    Lời giải tham khảo:

    Đáp án đúng: B

    Dựa vào hình vẽ ta có: \( - 2 \le f(x) \le 2,\forall x \in \left[ { - 2;2} \right]\,\) (*)

    \( \Rightarrow 2f\left( x \right) + 4 \ge 0,\forall x \in \left[ { - 2;2} \right]\)

    \(m \in \left[ {0;20} \right]\) nên \(2f\left( x \right) + m + 4 \ge 0\)

    Suy ra \(\left| {2f\left( x \right) + m + 4} \right| = 2f\left( x \right) + m + 4,\forall x \in \left[ { - 2;2} \right]\)

    Ta có: \(g\left( x \right) = \left| {\left| {2f\left( x \right) + m + 4} \right| - f(x) - 3} \right| = \left| {2f\left( x \right) + m + 4 - f\left( x \right) - 3} \right| = \left| {f\left( x \right) + m + 1} \right|\forall x \in \left[ { - 2;2} \right]\).

    +) Với \(m = 0 \Rightarrow g\left( x \right) = \left| {f\left( x \right) + 1} \right|,\forall x \in \left[ { - 2;2} \right]\).

    \(\begin{array}{l} (*) \Leftrightarrow \Rightarrow 0 \le \left| {f\left( x \right) + 1} \right| \le 3,\forall x \in \left[ { - 2;2} \right] - 1 \le f\left( x \right) + 1 \le 3,\forall x \in \left[ { - 2;2} \right]\\ \Leftrightarrow 0 \le g\left( x \right) \le 3,\forall x \in \left[ { - 2;2} \right] \end{array}\)

    \(\mathop { \Rightarrow min}\limits_{\left[ { - 2;2} \right]} \,g\left( x \right) = 0 \Rightarrow m = 0\) không thỏa yêu cầu bài toán.

    +) Với \(m \in \left[ {1;20} \right] \Rightarrow f\left( x \right) + m + 1 \ge 0 \Rightarrow g\left( x \right) = f\left( x \right) + m + 1\).

    Từ (*) ta có: \(f\left( x \right) + m + 1 \ge m - 1 \Rightarrow \mathop {min}\limits_{\left[ { - 2;2} \right]} \,g\left( x \right) = m - 1\).

    Yêu cầu bài toán: \(\mathop {min}\limits_{\left[ { - 2;2} \right]} \,g\left( x \right) \ge 1 \Leftrightarrow m - 1 \ge 1 \Leftrightarrow m \ge 2 \Rightarrow m \in \left[ {2;20} \right]\).

    Vậy có 19 giá trị nguyên của tham số m thỏa yêu cầu bài toán.

    ATNETWORK

Mã câu hỏi: 202940

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON