YOMEDIA
ZUNIA12
  • Câu hỏi:

    Cho hàm số \(y = \frac{{ax + 1}}{{bx - 2}}.\) Xác định a và b để đồ thị hàm số nhận đường thẳng x=1 là tiệm cận đứng và đường thẳng \(y=\frac{1}{2}\) làm tiệm cận ngang.

    • A. \(a = 2;b = - 2\)
    • B. \(a = -1;b = - 2\)
    • C. \(a = 2;b = 2\)
    • D. \(a = 1;b = 2\)

    Lời giải tham khảo:

    Đáp án đúng: D

    Đồ thị hàm số \(y = \frac{{ax + b}}{{cx + d}}\,(c \ne 0;ad - bc \ne 0)\) có tiệm cận đứng là đường thẳng \(x = {x_0}\) với \(x_0\) thỏa: 

    \(\left\{ \begin{array}{l} c{x_0} + d = 0\\ a{x_0} + b \ne 0 \end{array} \right..\) 

    Tiệm cận ngang là đường thẳng \(y = \frac{a}{c}.\)

    Suy ra: 

    Tiệm cận đứng \(x = \frac{2}{b} = 1 \Rightarrow b = 2.\)

    Tiệm cận ngang \(y = \frac{a}{b} = \frac{a}{2} = \frac{1}{2} \Rightarrow a = 1.\) 

    Thử lại với a = 1, b = 2 đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1, tiệm cận ngang là đường thẳng  \(y = \frac{1}{2}.\) 

    ANYMIND360

Mã câu hỏi: 4214

Loại bài: Bài tập

Chủ đề : Đạo hàm và ứng dụng

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 

 

 

CÂU HỎI KHÁC

ZUNIA9
 

 

YOMEDIA
ON