-
Câu hỏi:
Gọi A và B là hai điểm cực trị của đồ thị hàm số \(f\left( x \right) = {x^3} - 3x + 1.\) Tính độ dài AB.
- A. \(AB = 2\sqrt 2\)
- B. \(AB = 4\sqrt 2\)
- C. \(AB = \sqrt 2\)
- D. \(AB = \frac{\sqrt 2}{2}\)
Đáp án đúng: A
\(f\left( x \right) = {x^3} - 3x + 1\)
\(f'\left( x \right) = 3{x^2} - 3 = 0 \Leftrightarrow x = \pm 1\)
Vậy tọa độ các điểm cực trị là: \(A\left( {1, - 1} \right);B\left( { - 1,3} \right)\)
\(\Rightarrow AB = \sqrt {{{\left( { - 1 - 1} \right)}^2} + {{(3 - 1)}^2}} = 2\sqrt 2\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ CỰC TRỊ CỦA HÀM SỐ
- Hàm số y = {x^4} + 25{x^2} - 7 có tất cả bao nhiêu điểm cực trị
- Cho hàm số y=f(x) có đạo hàm cấp 2 trên khoảng K và x0 thuộc K
- Tìm khoảng cách giữa hai điểm cực trị của đồ thị hàm số y=(1/3)x^3-x^2-x-1
- Tìm m để đồ thị hàm số y=mx^4+(m+1)x^2+1 có đúng một điểm cực tiểu
- Hàm số y=f(x) có đạo hàm f'(x)=(x-1)^2(x-3)
- Tìm m để hàm số y=x^3-3mx^2+(2m+1)x-3+5 có cực đại và cực tiểu
- Tìm m để hàm số y=x^4-2(m^2+1)x^2+1 có 3 điểm cực trị sao cho giá trị cực tiểu đạt giá trị lớn nhất
- Tìm giá trị cực tiểu của hàm số y=x^3-3x^2+4
- Cho hàm số y=f(x) có đạo hàm cấp hai trên (a;b) và x_0 thuộc (a;b) Nếu f'(x0)=0 và f''(x_0)>0 thì x_0 là điểm cực tiểu của hàm số
- Tìm m để hàm số y=x^3-3x^2+mx+1 có hai điểm cực trị thỏa x1^2+x2^2=6