-
Câu hỏi:
Hàm số \(y=f(x)\) có đạo hàm \(f'\left( x \right) = {\left( {x - 1} \right)^2}\left( {x - 3} \right).\) Phát biển nào sau đây là đúng?
- A. Hàm số có một điểm cực đại
- B. Hàm số có hai điểm cực trị
- C. Hàm số có đúng 1 điểm cực trị
- D. Hàm số không có điểm cực trị
Đáp án đúng: C
Ta có \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 1\\ x = 3 \end{array} \right..\)
Ta thấy \(f'(x)\) không đổi dấu khi qua x=1 do đó x=1 không phải là điểm cực trị của hàm số.
\(f'(x)\) đổi dấu khi đi qua x=3.
Vậy hàm số có đúng một điểm cực trị là x=3.
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ CỰC TRỊ CỦA HÀM SỐ
- Tìm m để hàm số y=x^3-3mx^2+(2m+1)x-3+5 có cực đại và cực tiểu
- Tìm m để hàm số y=x^4-2(m^2+1)x^2+1 có 3 điểm cực trị sao cho giá trị cực tiểu đạt giá trị lớn nhất
- Tìm giá trị cực tiểu của hàm số y=x^3-3x^2+4
- Cho hàm số y=f(x) có đạo hàm cấp hai trên (a;b) và x_0 thuộc (a;b) Nếu f'(x0)=0 và f''(x_0)>0 thì x_0 là điểm cực tiểu của hàm số
- Tìm m để hàm số y=x^3-3x^2+mx+1 có hai điểm cực trị thỏa x1^2+x2^2=6
- Tìm m để đồ thị hàm số y=x^4-2mx^2+m+1 có 3 điểm cực trị tạo thành một tam giác có diện tích bằng 32
- Tìm giá trị cực tiểu của hàm số y=(x^2+5)/(x+2)
- Tìm m để hàm số y=x^3+6x^2-3(m-1)x-m-6 có cực đại cực tiểu sao cho x1
- Tìm m sao cho hàm số y=ln(x^2+4)-mx+3 đồng biến trên (-vô cực;+vô cực)
- Biết M(0;5), N(2;-11) là các điểm cực trị của đồ thị hàm số y=ax^3+bx^2+cx+d tính giá tị của hàm số tại x=2