-
Câu hỏi:
Cho hàm số \(y=f(x)\) có đạo hàm cấp 2 trên khoảng K và \(x_0\in K\). Khẳng định nào sau đây là khẳng định đúng?
- A. Nếu \(f'(x_0)=0\) thì \(x_0\) là điểm cực trị của hàm số \(y=f(x)\)
- B. Nếu \(f''(x_0)>0\) thì \(x_0\) là điểm cực tiểu của hàm số \(y=f(x)\)
- C. Nếu \(x_0\) là điểm cực trị của hàm số \(y=f(x)\) thì \(f(x_0)\ne0\)
- D. Nếu \(x_0\) là điểm cực trị của hàm số \(y=f(x)\) thì \(f'(x_0)=0\)
Đáp án đúng: A
+ Nếu hàm số f(x) có đạo hàm tại \(x_0\) là \(f'\left( {{x_0}} \right) = 0\) thì \(x_0\) là điểm cực trị của hàm số
Điều ngược lại không đúng vì hàm số \(f(x)\) có thể đạt cực trị tại những điểm thuộc tập xác định của nó mà tại đó hàm số không có đạo hàm. Suy ra A đúng và D sai.
+ Với phương án B, Nếu hàm số có đạo hàm tại \(x_0\) là \(f'\left( {{x_0}} \right) = 0\) và \(f''(x_0)>0\) thì hàm số đạt cực tiểu tại \(x_0\) nên B sai.
+ Với phương án C, ta kiểm tra với hàm số \(y=x^4\) đạt cực trị tại x=0, mà \(y''(0)=0\) nên C sai.
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ CỰC TRỊ CỦA HÀM SỐ
- Tìm khoảng cách giữa hai điểm cực trị của đồ thị hàm số y=(1/3)x^3-x^2-x-1
- Tìm m để đồ thị hàm số y=mx^4+(m+1)x^2+1 có đúng một điểm cực tiểu
- Hàm số y=f(x) có đạo hàm f'(x)=(x-1)^2(x-3)
- Tìm m để hàm số y=x^3-3mx^2+(2m+1)x-3+5 có cực đại và cực tiểu
- Tìm m để hàm số y=x^4-2(m^2+1)x^2+1 có 3 điểm cực trị sao cho giá trị cực tiểu đạt giá trị lớn nhất
- Tìm giá trị cực tiểu của hàm số y=x^3-3x^2+4
- Cho hàm số y=f(x) có đạo hàm cấp hai trên (a;b) và x_0 thuộc (a;b) Nếu f'(x0)=0 và f''(x_0)>0 thì x_0 là điểm cực tiểu của hàm số
- Tìm m để hàm số y=x^3-3x^2+mx+1 có hai điểm cực trị thỏa x1^2+x2^2=6
- Tìm m để đồ thị hàm số y=x^4-2mx^2+m+1 có 3 điểm cực trị tạo thành một tam giác có diện tích bằng 32
- Tìm giá trị cực tiểu của hàm số y=(x^2+5)/(x+2)