-
Câu hỏi:
Tìm tất cả giá trị thực của tham số m sao cho đồ thị hàm số y = x4 – 2mx2 + m – 1 có ba điểm cực trị tạo thành ba đỉnh của một tam giác đều.
- A. m=3
- B. m=0
- C. m>0
- D. \(m = \sqrt[3]{3}\)
Đáp án đúng: D
Xét hàm số \(y = {x^4} - 2m{x^2} + m - 1\)
\(\begin{array}{l} y' = 4{x^3} - 4mx = 4x({x^2} - m)\\ y' = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ {x^2} = m\,(*) \end{array} \right. \end{array}\)
Đồ thị hàm số đã cho có ba điểm cực trị khi và chỉ khi phương trình \(y'=0\) có ba nghiệm phân biệt.
Phương trình \(y'=0\) có 3 nghiệm phân biệt khi và chỉ khi (*) có 2 nghiệm phân biệt khác 0.
Điều này xảy ra khi m>0.
Khi m>0, ta có 3 điểm cực trị của đồ thị hàm số:
\(A(0;m - 1),\,B( - \sqrt m ; - {m^2} + m - 1),\,C( - \sqrt m ; - {m^2} + m - 1)\)
Ta có tam giác ABC cân tại A.
Vậy ABC đều khi và chỉ khi:
\(\begin{array}{l} AB = BC \Leftrightarrow \sqrt {{{\left( {\sqrt m } \right)}^2} + {m^4}} = 2\sqrt m \\ \Leftrightarrow m + {m^4} = 4m \Leftrightarrow m({m^3} - 3) = 0 \Rightarrow m = \sqrt[3]{3}\,(m > 0) \end{array}\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ CỰC TRỊ CỦA HÀM SỐ
- Tìm m sao cho đồ thị hàm số y=(5x-3)/(x^2-2mx+1) không có tiệm cận đứng
- Tìm m để hàm số y=x^3-3mx^2+3(m^2-1)x-3m^2+5 đạt cực đại tại x=1
- Hàm số f(x) có đạo hàm f'(x)=x(x-1)^2(2x+3) có bao nhiêu điểm cực trị
- Tìm khẳng định đúng về cực trị hàm số có bảng biến thiên cho trước: hàm số có giá trị cực đại bằng 2
- Tìm khẳng định đúng về cực trị hàm số y=(x-5)(sqrt[3]x^2)
- Tìm m để đồ thị hàm số y = {x^3} - 3{x^2} + m có hai cực trị nằm ở hai nửa mặt phẳng khác nhau với bờ là trục hoành
- Cho đồ thị hàm số y=ax^4+bx^3+c đạt cực đại tại A(0;3) và cực tiểu B(-1;-5) tính P=a+2b+3c
- Tìm khẳng định đúng về cực trị của hàm số y=2x^4+4x^2-3
- Đồ thị hàm số y=-x^3+3x^2-3x+1 có bao nhiêu điểm cực trị
- Tìm khẳng định đúng về cực trị của hàm số y=f(x) có bảng biến thiên cho trước