Để học tốt bài Tính chất ba đường cao của tam giác, HỌC247 xin mời các em học sinh cùng tham khảo bài giảng dưới đây bao gồm các kiến thức được trình bày cụ thể và chi tiết, cùng với các dạng bài tập minh họa giúp các em dễ dàng nắm vững được trọng tâm bài học. Chúc các em học sinh có một buổi học thật vui vẻ!
Tóm tắt lý thuyết
1.1. Đường cao của tam giác
Đoạn thẳng vuông góc kẻ từ một đỉnh của một tam giác đến đường thắng chứa cạnh đổi điện gọi là đường cao của tam giác đó. |
---|
Ví dụ: Trong Hình 1, đoạn thẳng BD là đường cao của tam giác ABC.
Đôi khi ta còn nói đường thẳng BD là đường cao của tam giác ABC.
Chú ý: Mỗi tam giác có ba đường cao.
1.2. Tính chất ba đường cao của tam giác
Định lí:
Ba đường cao của một tam giác cùng đi qua một điểm. |
---|
Ví dụ: Trong Hình 4, ba đường cao AD, BE, CF của tam giác ABC cùng đi qua điểm H
Chú ý:
- Ta còn nói ba đường cao AD, BE, CF đồng quy tại H. Điểm H được gọi là trực tâm của tam giác ABC.
- Tam giác nhọn có trực tâm nằm bên trong tam giác (Hình 5a)
- Tam giác vuông có trực tâm trùng với đỉnh góc vuông (Hình ŠSb)
- Tam giác tù có trực tâm nằm ngoài tam giác (Hình 5c).
Bài tập minh họa
Câu 1: Vẽ ba đường cao AH, BK, CE của tam giác nhọn ABC
Hướng dẫn giải
Để vẽ đường cao AH của tam giác nhọn ABC ta làm như sau:
Bước 1. Vẽ tam giác nhọn ABC.
Bước 2. Đặt êke sao cho 1 cạnh của êke trùng với cạnh BC, cạnh còn lại đi qua đỉnh A.
Khi đó kẻ 1 đường thẳng từ A đến BC thông qua cạnh đi đỉnh A vừa đặt, ta thu được đường cao đi qua đỉnh A. Đường thẳng này cắt cạnh BC tại một điểm, điểm này chính là điểm H.
Thực hiện tương tự đối với các đường cao BK và CE ta thu được hình vẽ sau:
Câu 2: Cho tam giác ABC có ba đường cao AD, BE, CF đồng qui tại trực tâm H. Tìm trực tâm của các tam giác HBC, HAB, HAC.
Hướng dẫn giải
+) Xét tam giác HBC ta có :
HD vuông góc với BC \( \Rightarrow \) HD là đường cao tam giác HBC
BF vuông góc với HC tại F ( kéo dài HC ) \( \Rightarrow \)BF là đường cao của tam giác HBC
CE vuông góc với HB tại E ( kéo dài HB ) \( \Rightarrow \)CE là đường cao của tam giác HBC
Ta kéo dài HD, BF, CE sẽ cắt nhau tại A
\( \Rightarrow \) A là trực tâm tam giác HBC
+) Xét tam giác HAB ta có :
HF vuông góc với AB \( \Rightarrow \) HF là đường cao tam giác HAB
BH vuông góc với AE tại E ( kéo dài HB ) \( \Rightarrow \)AE là đường cao của tam giác HAB
BD vuông góc với AH tại D ( kéo dài AH ) \( \Rightarrow \)BD là đường cao của tam giác HAB
Ta kéo dài HF, BD, AE sẽ cắt nhau tại C
\( \Rightarrow \) C là trực tâm tam giác HAB
+) Xét tam giác HAC ta có :
HE vuông góc với AC \( \Rightarrow \) HE là đường cao tam giác HAC
AF vuông góc với HC tại F ( kéo dài HC ) \( \Rightarrow \)AF là đường cao của tam giác HAC
CD vuông góc với AH tại D ( kéo dài AH ) \( \Rightarrow \)CD là đường cao của tam giác HAC
Ta kéo dài CD, HE, AF sẽ cắt nhau tại B
\( \Rightarrow \) B là trực tâm tam giác HAC.
Luyện tập Chương 8 Bài 8 Toán 7 CTST
Qua bài giảng ở trên, giúp các em học sinh:
- Nhận biết được các đường cao của tam giác.
- Nhận biết được sự đồng quy của ba đường cao tại trực tâm của tam giác.
3.1. Bài tập trắc nghiệm Chương 8 Bài 8 Toán 7 CTST
Để củng cố bài học xin mời các em cùng làm Bài kiểm tra Trắc nghiệm Toán 7 Chân trời sáng tạo Chương 8 Bài 8 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!
3.2. Bài tập SGK Chương 8 Bài 8 Toán 7 CTST
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 7 Chân trời sáng tạo Chương 8 Bài 8 để giúp các em nắm vững bài học và các phương pháp giải bài tập.
Hoạt động khám phá 1 trang 77 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Thực hành 1 trang 77 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Vận dụng 1 trang 77 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Hoạt động khám phá 2 trang 77 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Thực hành 2 trang 78 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Vận dụng 2 trang 78 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 1 trang 78 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 2 trang 78 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 3 trang 78 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 4 trang 78 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 1 trang 63 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 2 trang 63 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 3 trang 63 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 4 trang 63 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 63 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Hỏi đáp Chương 8 Bài 8 Toán 7 CTST
Trong quá trình học tập nếu có thắc mắc hay cần trợ giúp gì thì các em hãy comment ở mục Hỏi đáp, Cộng đồng Toán HOC247 sẽ hỗ trợ cho các em một cách nhanh chóng!
Chúc các em học tập tốt và luôn đạt thành tích cao trong học tập!
-- Mod Toán Học 7 HỌC247