YOMEDIA
NONE

Giải bài 4 trang 63 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST

Giải bài 4 trang 63 SBT Toán 7 Chân trời sáng tạo tập 2

Cho tam giác ABC có \(\widehat {{A^{}}} = {65^o},\widehat B = {54^o}\). Vẽ trực tâm H của tam giác ABC, Tính góc AHB.

ATNETWORK

Hướng dẫn giải chi tiết Bài 4

Phương pháp giải

- Sử dụng: tính chất ba đường cao trong tam giác.

- Áp dụng: tổng ba góc trong một tam giác bằng \({180^o}\)

Lời giải chi tiết

Ta có H là giao điểm của hai đường cao AE và BF.

Trong tam giác vuông ABE ta có:

\(\widehat {E{\rm{A}}B} = {90^o} - \widehat B = {90^o} - {54^o} = {36^o}\)

Trong tam giác vuông BAF ta có:

\(\widehat {FBA} = {90^o} - \widehat {{A^{}}} = {90^o} - {65^o} = {25^o}\)

Trong tam giác AHB ta có:

\(\widehat {AHB} = {90^o} - {36^o} - {25^o} = {119^o}\)

-- Mod Toán 7 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 4 trang 63 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON