Hoạt động khám phá 2 trang 82 SGK Toán 11 Chân trời sáng tạo tập 1
Cho hàm số \(y = f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{x + 1}&{khi\,\,1 < x \le 2}\\k&{khi\,\,x = 1}\end{array}} \right.\).
a) Xét tính liên tục của hàm số tại mỗi điểm \({x_0} \in \left( {1;2} \right)\).
b) Tìm \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right)\) và so sánh giá trị này với \(f\left( 2 \right)\).
c) Với giá trị nào của \(k\) thì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = k\)?
Hướng dẫn giải chi tiết Hoạt động khám phá 2
Phương pháp giải:
a) Bước 1: Tính \(f\left( {{x_0}} \right)\).
Bước 2: Tính \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\) (nếu có).
Bước 3: Kết luận:
• Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) \)\( = f\left( {{x_0}} \right)\) thì hàm số liên tục tại điểm \({x_0}\).
• Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) \ne f\left( {{x_0}} \right)\) hoặc không tồn tại \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\) thì hàm số không liên tục tại điểm \({x_0}\).
b) Áp dụng các công thức tính giới hạn của hàm số.
c) Tính \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right)\) và giải phương trình \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = k\).
Lời giải chi tiết:
a) Với mọi điểm \({x_0} \in \left( {1;2} \right)\), ta có: \(f\left( {{x_0}} \right) = {x_0} + 1\).
\(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) \)\( = \mathop {\lim }\limits_{x \to {x_0}} \left( {x + 1} \right) = {x_0} + 1\).
Vì \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) \)\( = f\left( {{x_0}} \right) = {x_0} + 1\) nên hàm số \(y = f\left( x \right)\) liên tục tại mỗi điểm \({x_0} \in \left( {1;2} \right)\).
b) \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) \)\( = \mathop {\lim }\limits_{x \to {2^ - }} \left( {x + 1} \right)\)\( = 2 + 1 = 3\).
\(f\left( 2 \right) = 2 + 1 = 3\).
\( \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right)\)\( = f\left( 2 \right)\).
c) \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right)\)\( = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 1} \right) = 1 + 1 = 2\)
\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = k \)\( \Leftrightarrow 2 = k \)\( \Leftrightarrow k = 2\)
Vậy với \(k = 2\) thì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = k\).
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Hoạt động khám phá 1 trang 80 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Thực hành 1 trang 81 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Vận dụng 1 trang 82 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Thực hành 2 trang 82 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Hoạt động khám phá 3 trang 82 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Thực hành 3 trang 83 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Thực hành 4 trang 83 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Vận dụng 2 trang 83 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Hoạt động khám phá 4 trang 83 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Thực hành 5 trang 84 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Vận dụng 3 trang 84 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 1 trang 84 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 2 trang 84 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 3 trang 85 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 4 trang 85 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 5 trang 85 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 6 trang 85 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Bài tập 1 trang 90 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 2 trang 90 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 3 trang 90 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 4 trang 90 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 5 trang 90 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 6 trang 90 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 7 trang 90 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 8 trang 91 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 9 trang 91 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 10 trang 91 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 11 trang 91 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 12 trang 91 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST