YOMEDIA
NONE

Hoạt động khám phá 2 trang 82 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Hoạt động khám phá 2 trang 82 SGK Toán 11 Chân trời sáng tạo tập 1

Cho hàm số \(y = f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{x + 1}&{khi\,\,1 < x \le 2}\\k&{khi\,\,x = 1}\end{array}} \right.\).

a) Xét tính liên tục của hàm số tại mỗi điểm \({x_0} \in \left( {1;2} \right)\).

b) Tìm \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right)\) và so sánh giá trị này với \(f\left( 2 \right)\).

c) Với giá trị nào của \(k\) thì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = k\)?

ATNETWORK

Hướng dẫn giải chi tiết Hoạt động khám phá 2

Phương pháp giải:

a) Bước 1: Tính \(f\left( {{x_0}} \right)\).

Bước 2: Tính \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\) (nếu có).

Bước 3: Kết luận:

• Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) \)\( = f\left( {{x_0}} \right)\) thì hàm số liên tục tại điểm \({x_0}\).

• Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) \ne f\left( {{x_0}} \right)\) hoặc không tồn tại \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\) thì hàm số không liên tục tại điểm \({x_0}\).

b) Áp dụng các công thức tính giới hạn của hàm số.

c) Tính \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right)\) và giải phương trình \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = k\).

 

Lời giải chi tiết:

a) Với mọi điểm \({x_0} \in \left( {1;2} \right)\), ta có: \(f\left( {{x_0}} \right) = {x_0} + 1\).

\(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) \)\( = \mathop {\lim }\limits_{x \to {x_0}} \left( {x + 1} \right) = {x_0} + 1\).

Vì \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) \)\( = f\left( {{x_0}} \right) = {x_0} + 1\) nên hàm số \(y = f\left( x \right)\) liên tục tại mỗi điểm \({x_0} \in \left( {1;2} \right)\).

 

b) \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) \)\( = \mathop {\lim }\limits_{x \to {2^ - }} \left( {x + 1} \right)\)\( = 2 + 1 = 3\).

\(f\left( 2 \right) = 2 + 1 = 3\).

\( \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right)\)\(  = f\left( 2 \right)\).

 

c) \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right)\)\(  = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 1} \right) = 1 + 1 = 2\)

\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = k \)\( \Leftrightarrow 2 = k \)\( \Leftrightarrow k = 2\)

Vậy với \(k = 2\) thì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = k\).

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Hoạt động khám phá 2 trang 82 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

Bài tập SGK khác

Hoạt động khám phá 1 trang 80 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Thực hành 1 trang 81 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Vận dụng 1 trang 82 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Thực hành 2 trang 82 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Hoạt động khám phá 3 trang 82 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Thực hành 3 trang 83 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Thực hành 4 trang 83 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Vận dụng 2 trang 83 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Hoạt động khám phá 4 trang 83 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Thực hành 5 trang 84 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Vận dụng 3 trang 84 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Giải Bài 1 trang 84 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Giải Bài 2 trang 84 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Giải Bài 3 trang 85 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Giải Bài 4 trang 85 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Giải Bài 5 trang 85 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Giải Bài 6 trang 85 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Bài tập 1 trang 90 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST

Bài tập 2 trang 90 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST

Bài tập 3 trang 90 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST

Bài tập 4 trang 90 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST

Bài tập 5 trang 90 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST

Bài tập 6 trang 90 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST

Bài tập 7 trang 90 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST

Bài tập 8 trang 91 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST

Bài tập 9 trang 91 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST

Bài tập 10 trang 91 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST

Bài tập 11 trang 91 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST

Bài tập 12 trang 91 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON