Bài tập 1 trang 90 SBT Toán 11 Tập 1 Chân trời sáng tạo
Dùng định nghĩa, xét tính liên tục của hàm số:
a) f(x) = x3 ‒ 3x + 2 tại điểm x = ‒2;
b) tại điểm x = 0.
Hướng dẫn giải chi tiết Bài tập 1
a) Tập xác định của hàm số là D = ℝ, chứa điểm ‒ 2.
Ta có:
⦁ f(‒2) = (‒2)3 ‒ 3.(‒2) + 2 = 0;
⦁ - 3.(-2) + 2 = 0.
Suy ra .
Vậy hàm số liên tục tại điểm x = ‒ 2.
b) Tập xác định của hàm số là chứa điểm 0.
Ta có:
⦁
⦁
Suy ra
Vậy hàm số liên tục tại điểm x = 0.
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải Bài 5 trang 85 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 6 trang 85 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Bài tập 2 trang 90 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 3 trang 90 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 4 trang 90 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 5 trang 90 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 6 trang 90 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 7 trang 90 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 8 trang 91 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 9 trang 91 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 10 trang 91 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 11 trang 91 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 12 trang 91 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST