YOMEDIA
NONE

Tìm max của A= 6(ab+bc+ca) + a(a-b)^2+b(b-c)^2+c(c-a)^2

cho a,b,c>0 thỏa mãn a+b+c=1

Tìm max của A=\(6\left(ab+bc+ca\right)+a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • SOS cho khỏe hihi :">

    Dự đoán khi \(a=b=c=\dfrac{1}{3}\) thì tìm dc \(A=2\)

    Ta c/m \(A=2 \) là MAX.Tức là chứng minh BĐT

    \(6(a+b+c)(ab+ac+bc)+\sum_{cyc}(a^2b+a^2c-2abc)\leq2(a+b+c)^3\)

    \(\Leftrightarrow 6\sum_{cyc}(a^2b+a^2c+abc)+\sum_{cyc}(a^2b+a^2c-2abc)\leq2\sum_{cyc}(a^3+3a^2b+3a^2c+2abc)\)

    \(\Leftrightarrow \sum_{cyc}(2a^3-a^2b-a^2c)\geq0\Leftrightarrow \sum_{cyc}(a^3-a^2b-ab^2+b^3)\geq0\)

    \(\Leftrightarrow\sum_{cyc}(a-b)^2(a+b)\ge0\)

    *Để ý dùm tui nhé tối là hay ngáo lắm :)*

      bởi nguyen mai 15/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON