YOMEDIA
NONE

Tìm m để với mọi giá trị x>9 ta có m(cănx-3)P >x+1

Cho biểu thức:

P = (\(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{4-x}\)):\(\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)

Tìm m để vs mọi giá trị x>9 ta có: m(\(\sqrt{x}\)-3)P>x+1

- Cô ơi giải giúp em với

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • ta có : \(P=\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)

    \(P=\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\dfrac{1-\sqrt{x}}{\sqrt{x}\left(2-\sqrt{x}\right)}-\dfrac{2}{\sqrt{x}}\right)\)

    \(P=\left(\dfrac{4\sqrt{x}\left(2-\sqrt{x}\right)+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\dfrac{1-\sqrt{x}-2\left(2-\sqrt{x}\right)}{\sqrt{x}\left(2-\sqrt{x}\right)}\right)\)

    \(P=\left(\dfrac{8\sqrt{x}-4x+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\dfrac{1-\sqrt{x}-4+2\sqrt{x}}{\sqrt{x}\left(2-\sqrt{x}\right)}\right)\) \(P=\left(\dfrac{8\sqrt{x}+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\dfrac{\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\right)\) \(P=\left(\dfrac{8\sqrt{x}+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right).\left(\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\right)\)

    \(P=\dfrac{4\sqrt{x}\left(2+\sqrt{x}\right)\sqrt{x}}{\left(2+\sqrt{x}\right)\left(\sqrt{x}-3\right)}=\dfrac{4x}{\sqrt{x}-3}\)

    \(\Rightarrow m\left(\sqrt{x}-3\right)P>x+1\Leftrightarrow4mx>x+1\Leftrightarrow\left(4m-1\right)x>1\) (1)

    th1: \(m=\dfrac{1}{4}\) \(\Rightarrow\) loại vì (1) vô nghĩa

    th2: \(m>\dfrac{1}{4}\) \(\Rightarrow x>\dfrac{1}{4m-1}\)\(x>9\)

    \(\Rightarrow\) để \(x>9\) là điều chắc chắn thì \(\dfrac{1}{4m-1}\ge9\Leftrightarrow1\ge36m-9\Leftrightarrow m\le\dfrac{5}{18}\)

    \(\Rightarrow\dfrac{1}{4}< m\le\dfrac{5}{18}\)

    th3: \(m< \dfrac{1}{4}\) \(\Rightarrow x< \dfrac{1}{4m-1}\)\(x>9\) \(\Rightarrow\dfrac{1}{4m-1}>9\) \(\Leftrightarrow\) \(m< \dfrac{5}{18}\)

    \(\Rightarrow m< \dfrac{1}{4}\)

    vậy \(\dfrac{1}{4}< m\le\dfrac{5}{18}\) hoặc \(m< \dfrac{1}{4}\)

      bởi Nguyễn Thị Thuỳ Ngân 14/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON