YOMEDIA
NONE

Tìm m để phương trình mx^2 + (m^2 - 3)x +m =0 có 2 nghiệm phân biệt thỏa x1 + x2 =13/4

mx^2 + (m^2 - 3)x +m =0. Tìm m để phương trình có 2nghiệm phân biệt thoả mãn x1 + x2 =13/4

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Để pt có 2 n0 pb thì \(\left\{{}\begin{matrix}a\ne0\\\Delta>0\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}m\ne0\\\left(m^2-3\right)^2-4m^2\end{matrix}\right.\)

    <=> \(\left\{{}\begin{matrix}m\ne0\\m^4-10m^2+3>0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}m\ne0\\\left(m^2-5\right)^2-16>0\end{matrix}\right.\)

    <=> \(\left\{{}\begin{matrix}m\ne0\\\left(m^2-5\right)^2>16\left(2\right)\end{matrix}\right.\)

    Xét (2) => \(\left[{}\begin{matrix}m^2-5< -4\\m^2-5>4\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}m^2< 1\\m^2>9\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}-1< m< 1\\\left[{}\begin{matrix}m< -3\\m>3\end{matrix}\right.\end{matrix}\right.\)

    => -1 < m < 1, m \(\ne\) 0 và m < -3 hoặc m > 3 (x)

    Với (x) thì pt luôn có n0 . Theo Vi-ét ta có

    x1 + x2 = \(\dfrac{-b}{a}=\dfrac{3-m^2}{m}\)

    Theo đề bài ta có x1 + x2 = \(\dfrac{13}{4}\)

    <=> \(\dfrac{3-m^2}{m}=\dfrac{13}{4}\)

    <=> 12 - 4m2 = 13m

    <=> 4m2 + 13m - 12 = 0

    <=> (4m - 3)(m + 4) = 0

    <=>\(\left[{}\begin{matrix}m=\dfrac{3}{4}\left(TM\right)\\m=-4\left(TM\right)\end{matrix}\right.\)

    Vậy \(m=\dfrac{3}{4}\) hoặc m = -4

      bởi Tran nhat loi Loi 26/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON