YOMEDIA
NONE

Tìm GTNN của P=a^2(b+1)/a+b+ab + b^2(b+1)/b+c+bc + c^2(a+1)/c+a+ac

Cho a, b, c > 0 thỏa mãn a + b + c = 3. Tìm GTNN :

\(P=\frac{a^2\left(b+1\right)}{a+b+ab}+\frac{b^2\left(c+1\right)}{b+c+bc}+\frac{c^2\left(a+1\right)}{c+a+ac}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải khác:

    Áp dụng BĐT Cauchy-Schwarz:

    \(P=\frac{a^2(b+1)}{a+b+ab}+\frac{b^2(c+1)}{b+c+bc}+\frac{c^2(a+1)}{c+a+ac}\)\(=\frac{a^2}{\frac{a+b+ab}{b+1}}+\frac{b^2}{\frac{b+c+bc}{c+1}}+\frac{c^2}{\frac{c+a+ca}{a+1}}\)

    \(\geq \frac{(a+b+c)^2}{\frac{(a+1)(b+1)-1}{b+1}+\frac{(b+1)(c+1)-1}{c+1}+\frac{(c+1)(a+1)-1}{a+1}}\)

    \(\Leftrightarrow P\geq \frac{9}{a+b+c+3-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)}=\frac{9}{6-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)}\)

    Áp dụng BĐT Cauchy-Schwarz:

    \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq \frac{9}{a+1+b+1+c+1}=\frac{9}{a+b+c+3}=\frac{9}{6}=\frac{3}{2}\)

    Do đó: \(6-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\leq 6-\frac{3}{2}=\frac{9}{2}\)

    \(\Rightarrow P\geq \frac{9}{\frac{9}{2}}=2\)

    Vậy P min là 2

    Dấu bằng xảy ra khi \(a=b=c=1\)

      bởi Nguyễn Thái 14/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON