ON
YOMEDIA
VIDEO_3D

Tìm giá trị nhỏ nhất của biểu thức P=ab/c+bc/a+ca/b

Cho các số dương a, b, c thoả mãn \(a^2+b^2+c^2=1\). Tìm giá trị nhỏ nhất của biểu thức:

\(P=\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\)

Theo dõi Vi phạm
ADSENSE

Trả lời (1)

 
 
 
  • Lời giải:

    Đặt \(\left(\frac{ab}{c}, \frac{bc}{a}, \frac{ca}{b}\right)=(x,y,z)\)

    Khi đó: \(xy=b^2; yz=c^2; xz=a^2\). Bài toán trở về dạng:

    Cho $x,y,z>0$ thỏa mãn: \(xy+yz+xz=1\)

    Tìm GTNN của \(P=x+y+z\)

    Thật vậy: Ta đã biết một BĐT quen thuộc theo AM-GM là:

    \((x+y+z)^2\geq 3(xy+yz+xz)\)

    \(\Rightarrow x+y+z\geq \sqrt{3(xy+yz+xz)}=\sqrt{3}\)

    Vậy \(P_{\min}=\sqrt{3}\)

    Dấu bằng xảy ra khi \(x=y=z\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)

      bởi Thắm Thanh 10/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
AMBIENT

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

MGID

Các câu hỏi mới

 

AMBIENT
1=>1
Array
(
    [0] => Array
        (
            [banner_bg] => 
            [banner_picture] => 894_1634779022.jpg
            [banner_picture2] => 
            [banner_picture3] => 
            [banner_picture4] => 
            [banner_picture5] => 
            [banner_link] => https://kids.hoc247.vn/tieuhoc247
            [banner_startdate] => 2021-09-01 00:00:00
            [banner_enddate] => 2021-10-31 23:59:59
            [banner_embed] => 
            [banner_date] => 
            [banner_time] => 
        )

)