YOMEDIA
NONE

Hãy thực hiện giải phương trình bằng sau cách đặt ẩn phụ: \({\left( {x + \dfrac{1}{x}} \right)^2} - 4\left( {x + \dfrac{1}{x}} \right) + 3 = 0\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • ĐK: \(x \ne 0.\)

    Đặt \(x + \dfrac{1}{x} = t\), ta thu được phương trình \({t^2} - 4t + 3 = 0\)

    Phương trình trên có \(a + b + c = 1 + \left( { - 4} \right) + 3 = 0\) nên có hai nghiệm \(t = 1;t = 3.\)

    + Với \(t = 1 \Rightarrow x + \dfrac{1}{x} = 1\)\( \Rightarrow {x^2} - x + 1 = 0\) . Xét \(\Delta  = {\left( { - 1} \right)^2} - 4.1.1 =  - 3 < 0\) nên phương trình vô nghiệm.

    + Với \(t = 3 \Rightarrow x + \dfrac{1}{x} = 3 \)\(\Rightarrow {x^2} - 3x + 1 = 0\) (*)

    Phương trình (*) có \(\Delta  = {\left( { - 3} \right)^2} - 4.1.1 = 5 > 0\) nên có hai nghiệm \(\left[ \begin{array}{l}x = \dfrac{{3 + \sqrt 5 }}{2}\\x = \dfrac{{3 - \sqrt 5 }}{2}\end{array} \right.\) (thỏa mãn)

    Vậy phương trình đã cho có hai nghiệm \(x = \dfrac{{3 + \sqrt 5 }}{2};x = \dfrac{{3 - \sqrt 5 }}{2}\)

      bởi Mai Vàng 27/04/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON