YOMEDIA
NONE

Chứng tỏ rằng phương trình x^2−(2m−3)x+m^2−3m=0 luôn có 2 nghiệm phân biệt

1.Cho: \(x^2-\left(2m-3\right)x+m^2-3m=0\)

Chứng tỏ rằng pt luôn có 2 nghiệm phân biệt

2.Cho : \(x^2-2\left(m+1\right)x+7\)

Tìm m để pt có nghiệm kép

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • 1) ta có : \(\Delta=\left(2m-3\right)^2-4\left(m^2-3m\right)\)

    \(=4m^2-12m+9-4m^2+12m=9>0\forall m\)

    \(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt (đpcm)

    2) ta có : \(\Delta'=\left(m+1\right)^2-7=m^2+2m+1-7=m^2+2m-6\)

    để phương trình có nghiệm kép \(\Leftrightarrow\Delta'=0\Leftrightarrow m^2+2m-6=0\)

    \(\Leftrightarrow\left[{}\begin{matrix}m=-1+\sqrt{7}\\m=-1-\sqrt{7}\end{matrix}\right.\) vậy ...........................................................................

      bởi Nguyễn Long 25/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON