YOMEDIA
NONE

Chứng minh x/căn bậc [3]yz+y/căn bậc [3]zx+z/căn bậc [3]xy>=xy+yz+zx

Cho x;y;z>0 thỏa mãn \(x^2+y^2+z^2=3\)

chứng minh: \(\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{zx}}+\dfrac{z}{\sqrt[3]{xy}}\ge xy+yz+zx\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có : Áp dụng BĐT Cauchy ba số ở mẫu ta được

    \(\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}\ge\dfrac{x}{\dfrac{y+z+1}{3}}+\dfrac{y}{\dfrac{x+z+1}{3}}+\dfrac{z}{\dfrac{x+y+1}{3}}=\dfrac{3x}{y+z+1}+\dfrac{3y}{x+z+1}+\dfrac{3z}{x+y+1}\)Thấy: \(xy+yz+xz\le\dfrac{\left(x+y+z\right)^2}{3}\left(?!\right)\)

    Ta phải chứng minh:

    \(\dfrac{3x}{y+z+1}+\dfrac{3y}{x+z+1}+\dfrac{3z}{x+y+1}\ge\dfrac{\left(x+y+z\right)^2}{3}\)

    \(\dfrac{x}{y+z+1}+\dfrac{y}{x+z+1}+\dfrac{z}{x+y+1}\ge\dfrac{\left(x+y+z\right)^2}{9}\)

    \(\dfrac{x}{y+z+1}+\dfrac{y}{x+z+1}+\dfrac{z}{x+y+1}=\dfrac{x^2}{xy+xz+x}+\dfrac{y^2}{xy+yz+y}+\dfrac{z^2}{xz+yz+z}\)

    Theo C.B.S

    \(\dfrac{x^2}{xy+xz+x}+\dfrac{y^2}{xy+yz+y}+\dfrac{z^2}{xz+yz+z}\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)

    Phải chứng minh

    \(\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{\left(x+y+z\right)^2}{9}\)

    \(\Leftrightarrow\dfrac{1}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{1}{9}\)

    Ta có : \(xy+yz+xz\le x^2+y^2+z^2=3\)

    Theo C.B.S : \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=3\)

    \(\Rightarrow2\left(xy+yz+xz\right)+x+y+z\le9\)

    \(\Rightarrow\dfrac{1}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{1}{9}\)

    => ĐPCM

      bởi Nguyen Van Bien 07/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON