YOMEDIA
NONE

Chứng minh tam giác BOE vuông và EI . BD = FI . CD = R^2

Cho tam giác ABC ( AB<AC) ngoại tiếp (O;R). (O;R) tiếp xúc với các cạnh BC, AC lần lượt tại E và F. Kẻ đường kính DI của đường tròn (O). Tiếp tuyến tại E của (O) cắt các cạnh AB, AC lần lượt tại E,F

a)Chứng minh tam giác BOE vuông và \(EI.BD=FI.CD=R^2\)

b) Gọi P và K là trung điểm cạnh BC và AD; Q là giao điểm của AC và BD. Chứng minh \(AQ=2KP\)

c) Gọi giao điểm của AO với BC là\(A_1\), giao của BO với AC là \(B_2\), giao của CO và AB là \(C_1\), tròn ngoại tiếp tam giác ABC là \(\left(O_1;R_1\right)\).

Chứng minh rằng: \(\dfrac{1}{AA_1}+\dfrac{1}{BB_1}+\dfrac{1}{CC_1}< \dfrac{2}{R_1-OO_1}\)

Các bạn nào có lời giải thì cmt dưới luôn nhé (e mình chiều thi vào 10 rồi. Cảm ơn mọi người nha:))

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Bạn thấy đề có chỗ nào hợp lý ko

      bởi doanthihoang thanh 30/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON