YOMEDIA
NONE

Chứng minh 4a^2/a-1 + 5b^2/b-1 + 3c^2/c-1 >=40

cho a,b,c >0. chứng minh:\(\dfrac{4a^2}{a-1}+\dfrac{5b^2}{b-1}+\dfrac{3c^2}{c-1}\ge48\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Nhận xét :

    Nhìn vào bất đẳng thức dễ thấy ở phần tử các aanrr đều ở bậc 2 còn mẫu thì lại bậc 1 nên cần điều kiện rõ ràng hơn cho a,b và c

    Tử số của các phân tử luôn dương , với điều kiện a,b,c > 0 thì mẫu rõ ràng có thể nhận giá trị âm khiên cả biểu thức bé hơn không ( mâu thuẫn đề ra ). Ví dụ khi a=b=c=\(\dfrac{1}{2}\)

    => VT \(=\dfrac{1}{1-\dfrac{1}{2}}\left(4a^2+5b^2+6c^2\right)=-2\left(4a^2+5b^2+6c^2\right)< 0\)(1)

    Mà VT \(\ge48\)(2)

    Thấy (1) và (2) mâu thuẫn

    => Đề sai hoặc thiểu điều kiện cho a,b và c

      bởi Đinh Dương Hồng Sương 14/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON