YOMEDIA
NONE

Cho phương trình \({x^2} + px - 5 = 0\) có nghiệm là \(x_1;x_2\). Hãy lập phương trình có hai nghiệm là hai số được cho trong trường hợp sau: \(–x_1\) và \(-x_2\).

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Phương trình \({x^2} + px - 5 = 0\) có hai nghiệm \(x_1\) và \(x_2\).

    Theo hệ thức Vi-ét ta có: 

    \(\eqalign{
    & {x_1} + {x_2} = - {p \over 1} = - p \cr 
    & {x_1}{x_2} = {{ - 5} \over 1} = - 5 \cr} \)    (1)

    Hai số \(-x_1\) và \(-x_2\) là nghiệm của phương trình:

    \(\left[ {x - \left( { - {x_1}} \right)} \right]\left[ {x - \left( { - {x_2}} \right)} \right] = 0 \)

    \( \Leftrightarrow \left( {x + {x_1}} \right)\left( {x + {x_2}} \right) = 0\)

    \( \Leftrightarrow {x^2} + {x_2}x +{x_1}x +{x_1} {x_2} = 0 \)

    \( \Leftrightarrow {x^2} + \left( {{x_1} + {x_2}} \right)x + {x_1}{x_2} = 0 \;\;(2)  \)

    Từ (1) và (2) phương trình phải tìm là: \({x^2} - px - 5 = 0\)

      bởi Nguyễn Minh Hải 19/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON