YOMEDIA
NONE

Với hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a,\(\widehat {BCD} = {120^0}\) và \(AA' = \dfrac{{7a}}{2}\). Hình chiếu vuông góc của A’ lên mặt phẳng (ABCD) trùng với giao điểm của AC và BD. Tính theo a thể tích khối hộp ABCD.A’B’C’D’.

A. \(V = 12{a^3}\)     

B. \(V = 3{a^3}\)  

C. \(V = 9{a^3}\)       

D. \(V = 6{a^3}\)  

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có: \(\widehat {BCD} = \widehat {BAD} = {120^0}\)

    \( \Rightarrow \widehat {ABC} = \widehat {ADC} = {60^0}\)

    \( \Rightarrow AB = BC = AC = a\)

    Áp dụng định lý Py – ta – go ta có:

    \(OA' = \sqrt {A{{A'}^2} - O{A^2}}  \)\(\,= \sqrt {\dfrac{{49{a^2}}}{4} - \dfrac{{{a^2}}}{4}}  = 2a\sqrt 3 \)

    Khi đó ta có:

    \({V_{ABCD.A'B'C'D'}} = A'O.{S_{ABCD}} \)\(\,= 2a\sqrt 3 .a.a.\sin 60 = 3{a^3}\)

    Chọn đáp án B.

      bởi thủy tiên 06/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON