YOMEDIA
NONE

Trong các tam giác vuông mà cạnh huyền có độ dài bằng 10cm, xác định tam giác có diện tích lớn nhất.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Gọi x, y là độ dài hai cạnh góc vuông của tam giác vuông có cạnh huyền là 10 cm, 0 < x < 10 và 0 < y < 10.

    Diện tích tam giác là \(S = {1 \over 2}xy(c{m^2})\)

    Ta có \({x^2} + {y^2} = 100\)

    S đạt giá trị lớn nhất khi và chỉ khi \({x^2}{y^2} = {x^2}(100 - {x^2})\) đạt giá trị lớn nhất.

    Bài toán quy về: Tìm \(x \in \left( {0;10} \right)\) sao cho tại đó hàm số \(z = {x^2}(100 - {x^2}),x \in \left( {0;10} \right)\) đạt giá trị lớn nhất.

    \(\begin{array}{l}
    z' = 2x\left( {100 - {x^2}} \right) + {x^2}\left( { - 2x} \right)\\
    = - 4{x^3} + 200x\\
    z' = 0 \Leftrightarrow - 4{x^3} + 200x = 0\\
    \Leftrightarrow - 4x\left( {{x^2} - 50} \right) = 0\\
    \Leftrightarrow \left[ \begin{array}{l}
    x = 0 \notin \left( {0;10} \right)\\
    x = 5\sqrt 2 \in \left( {0;10} \right)\\
    x = - 5\sqrt 2 \notin \left( {0;10} \right)
    \end{array} \right.
    \end{array}\)

    Do đó hàm số đạt GTLN tại \(x = 5\sqrt 2\). Khi đó \( y = 5\sqrt 2 \).

    Trong các tam giác vuông đó, tam giác vuông cân có diện tích lớn nhất.

    Độ dài hai cạnh góc vuông của tam giác đó là \(x = y = 5\sqrt 2 \) (cm).

      bởi Thụy Mây 19/10/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON