YOMEDIA
NONE

Tính tích phân từ 0 đến a của (sinx)^2016.cos(2018x)

Giúp em câu tích phân này với ạ. Em cảm ơn

\(\int\limits^a_0\left(sinx^{ }\right)\)^2016. cos(2018x) dx

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:

    Ta có:

    \(I=\int (\sin x)^{2016}\cos (2018x)dx=\int (\sin x)^{2016}\cos (2017x+x)dx\)

    \(=\int \sin ^{2016}x\cos (2017x)\cos xdx-\int \sin ^{2017}x\sin (2017x)dx\)

    (Khai triển theo công thức lượng giác \(\cos (a+b)=\cos a\cos b-\sin a\sin b\) )

    Thực hiện nguyên hàm từng phần:

    \(\left\{\begin{matrix} u=\cos (2017x)\\ dv=\sin ^{2016}x\cos xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=-2017\sin (2017x)dx\\ v=\int \sin ^{2016}x\cos xdx=\int \sin ^{2016}xd(\sin x)=\frac{\sin ^{2017}x}{2017}\end{matrix}\right.\)

    \(\Rightarrow \int \sin ^{2016}x\cos (2017x)\cos xdx=\frac{\sin ^{2017}x\cos (2017x)}{2017}+\int \sin ^{2017}x\sin (2017x)dx \)

    Suy ra:

    \(I=\frac{\sin ^{2017}x\cos (2017x)}{2017}+\int \sin ^{2017}x\cos (2017x)dx-\int \sin ^{2017}x\cos (2017x)dx\)

    \(=\frac{\sin ^{2017}x\cos (2017x)}{2017}\)

    \(\Rightarrow \int ^{a}_{0}\sin ^{2016}x\cos (2018x)dx=\frac{\sin ^{2017}a\cos (2017a)}{2017}\)

      bởi Nguyễn Thị Yến Nhi 27/09/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON