YOMEDIA
NONE

Hình thang cân ABCD có đáy nhỏ AB và hai cạnh bên đều dài 1m. Tính góc \(\alpha = \widehat {DAB} = \widehat {CBA}\) sao cho hình thang có diện tích lớn nhất và diện tích lớn nhất đó (h.1.1)

Hình thang cân ABCD có đáy nhỏ AB và hai cạnh bên đều dài 1m. Tính góc \(\alpha  = \widehat {DAB} = \widehat {CBA}\) sao cho hình thang có diện tích lớn nhất và diện tích lớn nhất đó (h.1.1) 

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Dựng \(AH \bot CD\). Đặt \(x = \widehat {ADC,}0 < x < {\pi  \over 2}\) , ta được AH = sinx; DH = cosx; DC = 1+ 2cosx. Diện tích hình thang là

    \(S = {{AB + CD} \over 2}AH = (1 + \cos x)sinx;0 < x < {\pi  \over 2}\)

    Bài toán quy về: Tìm \(x \in \left( {0;{\pi  \over 2}} \right)\) sao cho tại điểm đó s đạt giá trị lớn nhất trên khoảng \(\left( {0;{\pi  \over 2}} \right)\)

    \(S '= (\cos x + 1)(2\cos x - 1);0 < x < {\pi  \over 2}\)

    Hình thang có diện tích lớn nhất khi \(\alpha  = {{2\pi } \over 3}\) . Khi đó diện tích hình thang là \(S = {{3\sqrt 3 } \over 4}({m^2})\)

      bởi Khanh Đơn 03/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON