YOMEDIA
NONE

Có \(z \in \mathbb{C}\). Hãy cho biết mệnh đề nào sau đây sai?

A. \(\dfrac{1}{z} \in \mathbb{R} \Leftrightarrow z \in \mathbb{R}\)

B. \(\dfrac{1}{z}\) là thuần ảo \( \Leftrightarrow z\) là thuần ảo

C. \(\dfrac{1}{z} = \overline z  \Leftrightarrow \left| z \right| = 1\)

D. \(\left| {\dfrac{1}{z}} \right| = \left| z \right| \Leftrightarrow z \in \mathbb{R}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Đáp án A: \(\dfrac{1}{z} = \dfrac{1}{{a + bi}} = \dfrac{{a - bi}}{{{a^2} + {b^2}}}\)

    Do đó \(\dfrac{1}{z} \in \mathbb{R}\) \( \Leftrightarrow  - \dfrac{b}{{{a^2} + {b^2}}} = 0 \Leftrightarrow b = 0\) hay \(z = a \in \mathbb{R}\).

    A đúng.

    Đáp án B: \(\dfrac{1}{z}\) thuần ảo \( \Leftrightarrow \dfrac{a}{{{a^2} + {b^2}}} = 0 \Leftrightarrow a = 0\) hay \(z = bi\) thuần ảo.

    B đúng.

    Đáp án C: \(\dfrac{1}{z} = \overline z  \Leftrightarrow \dfrac{{a - bi}}{{{a^2} + {b^2}}} = a - bi\) \( \Leftrightarrow {a^2} + {b^2} = 1 \Leftrightarrow \left| z \right| = 1\)

    C đúng.

    Đáp án D: \(\left| {\dfrac{1}{z}} \right| = \left| z \right| \Leftrightarrow {\left| {\dfrac{1}{z}} \right|^2} = {\left| z \right|^2}\)\( \Leftrightarrow \dfrac{{{a^2}}}{{{{\left( {{a^2} + {b^2}} \right)}^2}}} + \dfrac{{{b^2}}}{{{{\left( {{a^2} + {b^2}} \right)}^2}}} = {a^2} + {b^2}\) \( \Leftrightarrow \dfrac{1}{{{a^2} + {b^2}}} = {a^2} + {b^2}\) \( \Leftrightarrow {a^2} + {b^2} = 1\) hay \(\left| z \right| = 1\) chứ chưa kết luận được \(z \in \mathbb{R}\).

    D sai.

    Chọn D.

      bởi Phan Quân 25/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON