ADMICRO
VIDEO

CM (|z|-|y|)/|z-y|>=(|z|-|x|)/|z-x|>=(|y|-|x|)/|y-x| với x, y, z là các số phức

Cho các số x,y,z là các số phức phân biệt sao cho \(y=tx+\left(1-t\right)z,t\in\left(0,1\right)\)

Chứng minh rằng :

\(\frac{\left|z\right|-\left|y\right|}{\left|z-y\right|}\ge\frac{\left|z\right|-\left|x\right|}{\left|z-x\right|}\ge\frac{\left|y\right|-\left|x\right|}{\left|y-x\right|}\)

Theo dõi Vi phạm
ADSENSE

Trả lời (1)

  • Từ hệ thức :

    \(y=tx+\left(1-t\right)z\)

    Bất đẳng thức 

    \(\frac{\left|z\right|-\left|y\right|}{\left|z-y\right|}\ge\frac{\left|z\right|-\left|x\right|}{\left|z-x\right|}\)

    Trở thành :

    \(\left|z\right|-\left|y\right|\ge t\left(\left|z\right|-\left|x\right|\right)\)

    hay 

    \(\left|y\right|\le\left(1-t\right)\left|z\right|+t\left|x\right|\)

    Vận dụng bất đẳng thức tam giác cho 

    \(y=\left(1-t\right)x+tx\) ta có kết quả

    Bất đẳng thức thứ hai, được chứng minh tương tự bởi

    \(y=tx+\left(1-t\right)z\)

    tương đương với :

    \(y-x=\left(1-t\right)\left(z-x\right)\)

     

      bởi Trương Minh Uyên 27/09/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
YOMEDIA

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

MGID

Các câu hỏi mới

ADMICRO

 

YOMEDIA
ON