YOMEDIA
NONE
  • Câu hỏi:

    Xét các số phức \(z=a+bi,\,\,\left( a,\,\,b\in \mathbb{R} \right)\) thỏa mãn \(\left| z-2+3i \right|=4\) và \(\left| z+1-4i \right|+\left| z-9 \right|\) đạt giá trị lớn nhất. Khi đó \(5a-2b\) bằng

    • A. 4
    • B. 8
    • C. 16
    • D. 5

    Lời giải tham khảo:

    Đáp án đúng: C

    Đặt \({{z}_{1}}=-1+4i,\,\,{{z}_{2}}=9\).

    Gọi \(M,\,\,B,\,\,C\) lần lượt là điểm biểu diễn các số phức \(z,\,\,{{z}_{1}}\) và \({{z}_{2}}\).

    Khi đó \(M\left( a;b \right),\,\,B\left( -1;4 \right)\) và \(C\left( 9;0 \right)\).

    Gọi \(H\) là trung điểm \(BC\) thì \(H\left( 4;2 \right)\).

    Ta có \(\left| z-2+3i \right|=4\Leftrightarrow {{\left( a-2 \right)}^{2}}+{{\left( b+3 \right)}^{2}}=16\) nên \(M\) thuộc đường tròn \(\left( C \right)\) tâm \(I\left( 2;-3 \right)\), bán kính \(R=4\).

    Dễ thấy \(IB>R,\,\,IC>R\) nên hai điểm \(B,\,\,C\) đều nằm ngoài đường tròn \(\left( C \right)\).

    Do \(\overrightarrow{IH}=\left( 2;5 \right),\,\,\overrightarrow{BC}=\left( 10;-4 \right)\) nên \(\overrightarrow{IH}.\overrightarrow{BC}=0\)

    Suy ra \(I\) thuộc trung trực \(BC\).

    Do đó, nếu \(IH\) cắt \(\left( C \right)\) tại điểm \(M\) sao cho \(I\) nằm giữa \(M\) và \(H\) thì \(MB+MC\) lớn nhất.

    Vì với mọi điểm \(N\) khác \(M\) thuộc đường tròn \(\left( C \right)\) thì

    \(NB+NC\le \sqrt{2\left( N{{B}^{2}}+N{{C}^{2}} \right)}=\sqrt{2\left( 2N{{H}^{2}}+\frac{B{{C}^{2}}}{2} \right)}=\sqrt{4N{{H}^{2}}+B{{C}^{2}}}\).

    Chú ý rằng \(MB+MC=2\sqrt{M{{H}^{2}}+{{\left( \frac{BC}{2} \right)}^{2}}}=\sqrt{4M{{H}^{2}}+B{{C}^{2}}}>\sqrt{4N{{H}^{2}}+B{{C}^{2}}}\)

    nên \(MB+MC>NB+NC\).

    Vậy điểm \(M\) thỏa mãn \(\overrightarrow{IM}=-\frac{R}{IH}.\overrightarrow{IH}\) (1)

    trong đó \(\overrightarrow{IM}=\left( a-2;b+3 \right),\,\,\overrightarrow{IH}=\left( 2;5 \right),\,\,R=4,\,\,IH=\sqrt{29}\).

    Do đó (1) tương với

    \(\begin{array}{l} \left\{ \begin{array}{l} a - 2 = \frac{{ - 4}}{{\sqrt {29} }}.2\\ b + 3 = \frac{{ - 4}}{{\sqrt {29} }}.5 \end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l} 5a = 10 - \frac{{40}}{{\sqrt {29} }}\\ 2b = - 6 - \frac{{40}}{{\sqrt {29} }} \end{array} \right.\\ \Rightarrow 5a - 2b = 16 \end{array}\)

    Vậy \(5a-2b=16\).

    ATNETWORK

Mã câu hỏi: 442456

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON