YOMEDIA
NONE
  • Câu hỏi:

    Trong không gian \(Oxyz\), cho hình thang cân \(ABCD\) có hai đáy \(AB,\,\,CD\) thỏa mãn \(CD = 2AB\) và diện tích bằng \(27\), đỉnh \(A\left( { - 1; - 1;0} \right)\), phương trình đường thẳng chứa cạnh \(CD\) là \(\frac{{x - 2}}{2} = \frac{{y + 1}}{2} = \frac{{z - 3}}{1}\). Tìm tọa độ điểm \(D\) biết hoành độ điểm \(B\) lớn hơn hoành độ điểm \(A\).

    • A. \(\left( { - 2; - 5;1} \right)\)
    • B. \(\left( { - 3; - 5;1} \right)\)
    • C. \(\left( {2; - 5;1} \right)\)
    • D. \(\left( {3;3;2} \right)\)

    Lời giải tham khảo:

    Đáp án đúng: D

    Gọi \(\overrightarrow u \left( {2;2;1} \right)\) là 1 VTCP của đường thẳng \(CD\).

    Vì \(AB\parallel CD\) nên \(\overrightarrow u \left( {2;2;1} \right)\) cũng là 1 VTCP của đường thẳng \(AB\).

    Suy ra phương trình đường thẳng chứa cạnh \(AB\) là: \(\frac{{x + 1}}{2} = \frac{{y + 1}}{2} = \frac{z}{1}\).

    Vì \(B \in AB \Rightarrow B\left( { - 1 + 2t; - 1 + 2t;t} \right)\) \(\left( { - 1 + 2t >  - 1 \Leftrightarrow t > 0} \right)\).

    Lấy \(M\left( {2; - 1;3} \right) \in CD\), ta có: \(\overrightarrow {AM}  = \left( {3;0;3} \right) \Rightarrow \left[ {\overrightarrow {AM} ;\overrightarrow u } \right] = \left( {6; - 3; - 6} \right)\).

    \(\begin{array}{l} \Rightarrow d\left( {A;CD} \right) = \frac{{\left| {\left[ {\overrightarrow {AM} ;\overrightarrow u } \right]} \right|}}{{\left| {\overrightarrow u } \right|}}\\ = \frac{{\sqrt {{6^2} + {{\left( { - 3} \right)}^2} + {{\left( { - 6} \right)}^2}} }}{{\sqrt {{2^2} + {2^2} + {1^2}} }} = 3\\{S_{ABCD}} = \frac{{\left( {AB + CD} \right).d\left( {A;CD} \right)}}{2}\\ \Rightarrow 27 = \frac{{\left( {AB + 2AB} \right).3}}{2}\\ \Leftrightarrow 3AB = 18 \Leftrightarrow AB = 6\\ \Leftrightarrow A{B^2} = 36\\ \Leftrightarrow {\left( { - 1 + 2t + 1} \right)^2} + {\left( { - 1 + 2t + 1} \right)^2}\\ + {\left( {t - 0} \right)^2} = 36\\ \Leftrightarrow 4{t^2} + 4{t^2} + {t^2} = 36\\ \Leftrightarrow {t^2} = 4 \Leftrightarrow \left[ \begin{array}{l}t = 2\,\,\,\left( {tm} \right)\\t =  - 2\,\,\left( {ktm} \right)\end{array} \right.\end{array}\)

    Vậy \(B\left( {3;3;2} \right)\).

    ATNETWORK

Mã câu hỏi: 255937

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON