YOMEDIA
NONE
  • Câu hỏi:

    Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(C\), biết \(AB = 2a\), \(AC = a\), \(BC' = 2a\). Tính thể tích \(V\) của khối lăng trụ đã cho.

    • A. \(V = \frac{{\sqrt 3 {a^3}}}{6}\)
    • B. \(V = \frac{{4{a^3}}}{3}\)
    • C. \(V = \frac{{\sqrt 3 {a^3}}}{2}\)
    • D. \(V = 4{a^3}\)

    Lời giải tham khảo:

    Đáp án đúng: C

    Tam giác \(ABC\) vuông tại \(C\) nên áp dụng định lí Pytago ta có: \(BC = \sqrt {A{B^2} - A{C^2}}  = a\sqrt 3 \).

    \( \Rightarrow {S_{\Delta ABC}} = \frac{1}{2}AC.BC = \frac{1}{2}.a.a\sqrt 3  = \frac{{{a^2}\sqrt 3 }}{2}\).

    Ta có: \(CC' \bot \left( {ABC} \right)\) nên \(CC' \bot BC\), suy ra tam giác \(BCC'\) vuông tại \(C\). Áp dụng định lí Pytago ta có: \(CC' = \sqrt {BC{'^2} - B{C^2}}  = a\).

    Vậy \({V_{ABC.A'B'C'}} = CC'.{S_{\Delta ABC}} = a.\frac{{{a^2}\sqrt 3 }}{2} = \frac{{{a^3}\sqrt 3 }}{2}\).

    ATNETWORK

Mã câu hỏi: 255925

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON