YOMEDIA
NONE
  • Câu hỏi:

    Cho vật thể có mặt đáy là hình tròn có bán kính bằng 1, tâm trùng gốc tọa độ (hình vẽ). Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x \(\left( { - 1 \le x \le 1} \right)\) thì được thiết diện là một tam giác đều. Tính thể tích V của vật thể đó.

    • A. \(V = \pi \)
    • B. \(V = \frac{{4\sqrt 3 }}{3}\)
    • C. \(V = 3\sqrt 3 \)
    • D. \(V = \sqrt 3 \)

    Lời giải tham khảo:

    Đáp án đúng: B

    Độ dài cạnh của tam giác đều cắt trục Ox là \(a = 2.\sqrt {1 - {x^2}} \)

    Diện tích tam giác đều đó là \(S = \frac{{{a^2}\sqrt 3 }}{4} = \frac{{4\left( {1 - {x^2}} \right)\sqrt 3 }}{4} = \sqrt 3 \left( {1 - {x^2}} \right)\)

    Thể tích vật thể là \(V = \int\limits_{ - 1}^1 {Sdx}  = \int\limits_{ - 1}^1 {\sqrt 3 \left( {1 - {x^2}} \right)dx}  = \frac{{4\sqrt 3 }}{3}\)

    ATNETWORK

Mã câu hỏi: 255934

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON