YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số \(y = f\left( x \right)\) có đạo hàm cấp hai liên tục trên \(\mathbb{R}\). Biết rằng các tiếp tuyến của đồ thị \(y = f\left( x \right)\) tại các điểm có hoành độ \(x =  - 1\), \(x = 0\), \(x = 1\) lần lượt tạo với chiều dương của trục \(Ox\) các góc \({30^0}\), \({45^0}\), \({60^0}\). Tính tích phân \(I = \int\limits_{ - 1}^0 {f'\left( x \right).f''\left( x \right)dx}  + 4\int\limits_0^1 {{{\left[ {f'\left( x \right)} \right]}^3}.f''\left( x \right)dx} \).

    • A. \(I = \frac{{25}}{3}\)
    • B. I = 0
    • C. \(I = \frac{1}{3}\)
    • D. \(I = \frac{{\sqrt 3 }}{3} + 1\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Vì các tiếp tuyến của đồ thị \(y = f\left( x \right)\) tại các điểm có hoành độ \(x =  - 1\), \(x = 0\), \(x = 1\) lần lượt tạo với chiều dương của trục \(Ox\) các góc \({30^0}\), \({45^0}\), \({60^0}\) nên ta có: \(y'\left( { - 1} \right) = \tan {30^0} = \frac{{\sqrt 3 }}{3}\), \(y'\left( 0 \right) = \tan {45^0} = 1\), \(y'\left( 1 \right) = \tan {60^0} = \sqrt 3 \).

    Đặt \({I_1} = \int\limits_{ - 1}^0 {f'\left( x \right).f''\left( x \right)dx} \) , \({I_2} = \int\limits_0^1 {{{\left[ {f'\left( x \right)} \right]}^3}.f''\left( x \right)dx} \).

    Đặt \(t = f'\left( x \right)\) \( \Rightarrow dt = f''\left( x \right)dx\).

    Đổi cận: \(\left\{ \begin{array}{l}x =  - 1 \Rightarrow t = f'\left( { - 1} \right) = \frac{{\sqrt 3 }}{3}\\x = 0 \Rightarrow t = f'\left( 0 \right) = 1\\x =  - 1 \Rightarrow t = f'\left( 1 \right) = \sqrt 3 \end{array} \right.\).

    Khi đó ta có:

    \(\begin{array}{l}{I_1} = \int\limits_{\frac{{\sqrt 3 }}{3}}^1 {tdt}  = \left. {\frac{{{t^2}}}{2}} \right|_{\frac{{\sqrt 3 }}{3}}^1 = \frac{1}{2} - \frac{1}{6} = \frac{1}{3}\\{I_2} = \int\limits_1^{\sqrt 3 } {{t^3}dt}  = \left. {\frac{{{t^4}}}{4}} \right|_1^{\sqrt 3 } = \frac{9}{4} - \frac{1}{4} = 2\end{array}\)

    Vậy \(I = {I_1} + 4{I_2} = \frac{1}{3} + 8 = \frac{{25}}{3}\).

    ATNETWORK

Mã câu hỏi: 255930

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON