YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số \(y = \frac{x}{{1 - x}}\,\,\left( C \right)\) và điểm \(A\left( { - 1;1} \right)\). Tìm \(m\) để đường thẳng \(d:\,\,y = mx - m - 1\) cắt \(\left( C \right)\) tại 2 điểm phân biệt \(M,\,\,N\) sao cho \(A{M^2} + A{N^2}\) đạt giá trị nhỏ nhất.

    • A. m = -1
    • B. m = 0
    • C. m = -2
    • D. \(m =  - \frac{2}{3}\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Xét phương trình hoành độ giao điểm:.

    \(\begin{array}{l}\,\,\,\,\,\,\frac{x}{{1 - x}} = mx - m - 1\,\,\left( {x \ne 1} \right)\\ \Leftrightarrow x = \left( {mx - m - 1} \right)\left( {1 - x} \right)\\ \Leftrightarrow x = mx - m - 1 - m{x^2} + mx + x\\ \Leftrightarrow m{x^2} - 2mx + m + 1 = 0\,\,\,\left( * \right)\end{array}\)

    Để đường thẳng \(d:\,\,y = mx - m - 1\) cắt \(\left( C \right)\) tại 2 điểm phân biệt \(M,\,\,N\) thì phương trình (*) phải có 2 nghiệm phân biệt khác \(1\) \( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' = {m^2} - m\left( {m + 1} \right) > 0\\m - 2m + m + 1 \ne 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l} - m > 0\\1 \ne 0\end{array} \right. \Leftrightarrow m < 0\).

    Khi đó hoành độ của hai điểm \(M,\,\,N\) là nghiệm của phương trình (*), áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_M} + {x_N} = 2\\{x_M}.{x_N} = \frac{{m + 1}}{m}\end{array} \right.\).

    Ta có: \(\left\{ \begin{array}{l}{y_M} = m{x_M} - m - 1\\{y_N} = m{x_N} - m - 1\end{array} \right.\)

    \( \Rightarrow {y_M} + {y_N}\)\( = \left( {{x_M} + {x_N}} \right) - 2m - 2 =  - 2\)

    Gọi \(I\) là trung điểm của \(MN\), ta có \(I\left( {1; - 1} \right)\) \( \Rightarrow A{I^2} = {2^2} + {\left( { - 2} \right)^2} = 8\).

    \(\begin{array}{l}M{N^2} = {\left( {{x_M} - {x_N}} \right)^2} + {\left( {{y_M} - {y_N}} \right)^2}\\ = {\left( {{x_M} - {x_N}} \right)^2}\\ + {\left( {m{x_M} - m - 1 - m{x_N} + m + 1} \right)^2}\\ = {\left( {{x_M} - {x_N}} \right)^2} + {m^2}{\left( {{x_M} - {x_N}} \right)^2}\\ = \left( {1 + {m^2}} \right){\left( {{x_M} - {x_N}} \right)^2}\\ = \left( {1 + {m^2}} \right)\left[ {{{\left( {{x_M} + {x_N}} \right)}^2} - 4{x_M}{x_N}} \right]\\ = \left( {1 + {m^2}} \right)\left[ {4 - 4\frac{{m + 1}}{m}} \right]\\ =  - 4\frac{{1 + {m^2}}}{m}\end{array}\)

    Do \(M{N^2} > 0\) nên \(m < 0\).

    Đặt \(T = A{M^2} + A{N^2}\)

    Ta có:

    \(\begin{array}{l}A{I^2} = \frac{{A{M^2} + A{N^2}}}{2} - \frac{{M{N^2}}}{4}\\ \Rightarrow 4A{I^2} = 2T - M{N^2}\\ \Leftrightarrow T = \frac{{4A{I^2} + M{N^2}}}{2}\\ \Leftrightarrow T = \frac{{4.8 - 4\frac{{1 + {m^2}}}{m}}}{2}\\ \Leftrightarrow T = 16 - 2\frac{{1 + {m^2}}}{m}\\ \Leftrightarrow T = \frac{{ - 2{m^2} + 16m - 2}}{m}\end{array}\)

    Ta có:

    \(\begin{array}{l}T' = \frac{{\left( { - 4m + 16} \right)m - \left( { - 2{m^2} + 16m - 2} \right)}}{{{m^2}}}\\T' = \frac{{ - 4{m^2} + 16m + 2{m^2} - 16m + 2}}{{{m^2}}}\\T' = \frac{{ - 2{m^2} + 2}}{{{m^2}}} = 0 \Leftrightarrow m =  \pm 1\end{array}\)

    BBT:

    Từ BBT ta thấy \(\min T = 20 \Leftrightarrow m =  - 1\) .

    ATNETWORK

Mã câu hỏi: 255929

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON