• Câu hỏi:

    Tính thể tích V của tứ diện OABC với A, B, C lần lượt là giao điểm của mặt phẳng \(2x - 3y + 5z - 30 = 0\) với trục Ox, Oy, Oz.

    • A.  V=78
    • B. V=120
    • C. V=91
    • D. V=150

    Lời giải tham khảo:

    Đáp án đúng: D

    Ta có \(A \in Ox;B \in Oy;C \in Oz\) do đó  \(A\left( {x;0;0} \right);B\left( {0;y;0} \right);C\left( {0;0;z} \right)\).

    Khi đó lần lượt thay tọa độ các điểm trên vào phương trình mặt phẳng \(2x - 3y + 5z - 30 = 0\) thì ta lần lượt được  \(A\left( {15;0;0} \right);B\left( {0; - 10;0} \right);C\left( {0;0;6} \right)\).

    Tứ diện OABC có các cạnh bên OA;OB;OC đôi một vuông góc.

    Do đó:  \({V_{OABC}} = \frac{1}{3}.\frac{1}{2}.OA.OB.OC\) \(= \frac{1}{6}.15.10.6 = 150\).

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC