-
Câu hỏi:
Tìm tất cả các giá trị thực của m để đồ thị hàm số \(y = {x^4} - 4\left( {m - 1} \right){{\rm{x}}^2} + 2m - 1\) có ba điểm cực trị tạo thành một tam giác có một góc bằng \({120^o}.\)
- A. \(m = 1 + \sqrt[3]{{16}}\)
- B. \(m = 1 + \sqrt[3]{{2}}\)
- C. \(m = 1 + \sqrt[3]{{48}}\)
- D. \(m = 1 + \sqrt[3]{{24}}\)
Đáp án đúng: D
Xét hàm số \(y = {x^4} - 4\left( {m - 1} \right){x^2} + 2m - 1\), ta có: \(y' = 4{{\rm{x}}^3} - 8\left( {m - 1} \right)x = 4x\left[ {{x^2} - 2(m - 1)} \right].\)
Đồ thị hàm số có 3 điểm cực trị khi phương trình \(y' = 0\) có 3 nghiệm phân biệt hay m>1.
Khi đó tọa độ độ các điểm cực trị là:
\(A(0;2m - 1);\,B(\sqrt {2(m - 1)} ; - 4{(m - 1)^2} + 2m - 1);C( - \sqrt {2(m - 1)} ; - 4{(m - 1)^2} + 2m - 1)\)
Ta có:
\(\begin{array}{l}\overrightarrow {AB} = \left( {\sqrt {2(m - 1)} ; - 4{{(m - 1)}^2}} \right)\\\overrightarrow {AC} = \left( { - \sqrt {2(m - 1)} ; - 4{{(m - 1)}^2}} \right)\end{array}\)
Tam giác ABC cân tại A có một góc bằng \({120^0}\) suy ra: \(\widehat {BAC} = {120^2} = \left( {\overrightarrow {AB} ;\overrightarrow {AC} } \right)\)
\( \Rightarrow \frac{{ - 2(m - 1) + 16{{(1 - m)}^4}}}{{2(m - 1) + 16{{(1 - m)}^4}}} = - \frac{1}{2} \Leftrightarrow {\left( {m - 1} \right)^3} = \frac{1}{{24}}
\Leftrightarrow \(m = 1 + \frac{1}{\sqrt[3]{24}}\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ CỰC TRỊ CỦA HÀM SỐ
- Tìm khẳng định đúng về cực trị của hàm số y=f(x) xác định, liên tục trên đoạn [-1;3] và có đồ thị như hình vẽ bên
- Khẳng định nào sau đây đúng về hàm số y=f(x) có bảng biến thiên như hình vẽ bên dưới.
- Tìm hàm số mà đồ thị có đúng một điểm cực trị y = {x^4} + 2{x^2} - 1
- Tìm khẳng định sai về cực trị của hàm số có bảng biến thiên như hình vẽ
- Đồ thị hàm số y=1/5x^5+5/4x^4+1/3x^3-18x-4 có tất cả bao nhiêu điểm cực trị
- Hỏi đồ thị các hàm số (y = f(x)), (y = f'(x)) và (y = f''(x)) theo thứ tự, lần lượt tương ứng với đường cong nào?
- Tìm tất cả các giá trị thực của tham số mđể đồ thị của hàm số y = {x^4} - 2m{x^2} + 1 có ba điểm cực trị là ba đỉnh của một tam giác có bán kính đường tròn ngoại tiếp bằng 1
- Tìm khẳng định đúng về hàm số y=1/4x^4-2x^3+3
- Cho hàm số y = {x^3} + {x^2} + mx + 1, tìm các giá trị thực của tham số(m)để hàm số có hai điểm cực trị nằm về 2 phía của trục tung
- Cho hàm số f có đạo hàm trên khoảng (left( {a;b} ight)) chứa ({x_0},f'left( {{x_0}} ight) = 0) và f có đạo hàm cấp hai tại {x_0}