YOMEDIA
NONE
  • Câu hỏi:

    Tìm tập hợp điểm biểu diễn số phức z thỏa mãn \(\left| {z - i} \right| = \left| {(1 + i)z} \right|\). 

    • A. Đường tròn tâm I(0; 1), bán kính \(R = \sqrt 2 \).
    • B. Đường tròn tâm I(1; 0), bán kính \(R = \sqrt 2 \). 
    • C. Đường tròn tâm I(-1; 0), bán kính \(R = \sqrt 2 \).
    • D. Đường tròn tâm I(0; -1), bán kính \(R = \sqrt 2 \).

    Lời giải tham khảo:

    Đáp án đúng: D

    Gọi số phức \(z = x + yi\;\;\left( {x,\;y \in \mathbb{R}} \right).\)

     \(\begin{array}{l}\;\;\;\left| {z - i} \right| = \left| {\left( {1 + i} \right)z} \right| \Leftrightarrow \left| {x + yi - i} \right| = \left| {\left( {1 + i} \right)\left( {x + yi} \right)} \right|\\ \Leftrightarrow \left| {x + \left( {y - 1} \right)i} \right| = \left| {x - y + \left( {y + x} \right)i} \right|\\ \Leftrightarrow \sqrt {{x^2} + {{\left( {y - 1} \right)}^2}}  = \sqrt {{{\left( {x - y} \right)}^2} + {{\left( {y + x} \right)}^2}} \\ \Leftrightarrow {x^2} + {y^2} - 2y + 1 = {x^2} - 2xy + {y^2} + {y^2} + 2xy + {x^2}\\ \Leftrightarrow {x^2} + {y^2} + 2y - 1 = 0.\end{array}\)

    Vậy tập hợp biểu diễn số phức \(z\) thỏa mãn bài cho là đường tròn có phương trình \({x^2} + {y^2} + 2y - 1 = 0\)  có tâm \(I\left( {0; - 1} \right)\) và bán kính \(R = \sqrt 2 .\)

    Chọn D.

    ATNETWORK

Mã câu hỏi: 360265

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON