YOMEDIA
NONE
  • Câu hỏi:

    Trong không gian với hệ tọa độ Oxyz viết phương trình đường thẳng giao tuyến của hai mặt phẳng \((\alpha ):x + 3y - z + 1 = 0,\)\((\beta ):2x - y + z - 7 = 0\). 

    • A. \(\dfrac{{x + 2}}{2} = \dfrac{y}{{ - 3}} = \dfrac{{z + 3}}{{ - 7}}\) 
    • B. \(\dfrac{{x - 2}}{2} = \dfrac{y}{3} = \dfrac{{z - 3}}{{ - 7}}\) 
    • C. \(\dfrac{x}{{ - 2}} = \dfrac{{y - 3}}{{ - 3}} = \dfrac{{z - 10}}{7}\)
    • D. \(\dfrac{{x - 2}}{{ - 2}} = \dfrac{y}{3} = \dfrac{{z - 3}}{7}\) 

    Lời giải tham khảo:

    Đáp án đúng: D

    Ta có: \(\overrightarrow {{n_\alpha }}  = \left( {1;\;3; - 1} \right),\;\;\overrightarrow {{n_\beta }}  = \left( {2; - 1;\;1} \right).\)

    \(d = \left( \alpha  \right) \cap \left( \beta  \right) \Rightarrow \left\{ \begin{array}{l}\overrightarrow {{u_d}}  \bot \overrightarrow {{n_\alpha }} \\\overrightarrow {{u_d}}  \bot \overrightarrow {{n_\beta }} \end{array} \right. \Rightarrow \overrightarrow {{u_d}}  = \left[ {\overrightarrow {{n_\alpha }} ,\;\overrightarrow {{n_\beta }} } \right] = \left( {2; - 3; - 7} \right)//\left( { - 2;3;7} \right)\)

    +) Tìm tọa độ điểm \(A\left( {{x_0};\;{y_0};\;{z_0}} \right)\) thuộc hai mặt phẳng \(\left( \alpha  \right),\;\;\left( \beta  \right):\)

    Chọn \({y_0} = 0 \Rightarrow \left( {{x_0};\;{z_0}} \right)\) là nghiệm của hệ phương trình: \(\left\{ \begin{array}{l}{x_0} - {z_0} + 1 = 0\\2{x_0} + {z_0} - 7 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_0} = 2\\{z_0} = 3\end{array} \right.\)

    \( \Rightarrow A\left( {2;\;0;\;3} \right) \Rightarrow \) phương trình đường thẳng \(d:\;\;\dfrac{{x - 2}}{{ - 2}} = \dfrac{y}{3} = \dfrac{{z - 3}}{7}.\)

    Chọn D.

    ATNETWORK

Mã câu hỏi: 360268

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
NONE
ON