YOMEDIA
UREKA
  • Câu hỏi:

    Tìm m để phương trình \(\log _{\sqrt 3 }^2x - m{\log _{\sqrt 3 }}x + 1 = 0\) có nghiệm duy nhất.

    • A.  \(m=\pm1\)
    • B.  \(m=\pm3\)
    • C.  \(m=\pm 2\)
    • D. Không tồn tại m

    Lời giải tham khảo:

    Đáp án đúng: C

    Đặt \(t = {\log _{\sqrt 3 }}x.\)

    Bất phương trình trở thành: \({t^2} - mt + 1 = 0.\) 

    Để phương trình \(\log _{\sqrt 3 }^2x - m{\log _{\sqrt 3 }}x + 1 = 0\) có nghiệm duy nhất thì phương trình \({t^2} - mt + 1 = 0\) phải có nghiệm kép.

    Điều này xảy ra khi: 

    \(\Delta = {m^2} - 4 = 0 \Leftrightarrow \left[ \begin{array}{l} m = 2\\ m = - 2 \end{array} \right.\)

    ADSENSE

Mã câu hỏi: 1538

Loại bài: Bài tập

Chủ đề : Mũ và lôgarit

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 

 

 

CÂU HỎI KHÁC

ADMICRO
 

 

YOMEDIA
OFF