YOMEDIA
NONE
  • Câu hỏi:

    Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \frac{{3x - 2}}{{x + 2}}\) trên đoạn \([0;3].\)

    • A. \(\mathop {\min }\limits_{[0;3]} f(x) = \frac{1}{3};\,\,\mathop {\max }\limits_{[0;3]} f(x) = 1.\,\,\)
    • B. \(\mathop {\min }\limits_{[0;3]} f(x) = \frac{{ - 7}}{5};\,\,\mathop {\max }\limits_{[0;3]} f(x) = 1.\,\,\)
    • C. \(\mathop {\min }\limits_{[0;3]} f(x) =  - 1;\,\,\mathop {\max }\limits_{[0;3]} f(x) = \frac{7}{5}.\,\,\)
    • D. \(\mathop {\min }\limits_{[0;3]} f(x) =  - 1;\,\,\mathop {\max }\limits_{[0;3]} f(x) = \frac{1}{3}.\,\,\)

    Lời giải tham khảo:

    Đáp án đúng: C

    \(y' = \frac{8}{{{{\left( {x + 2} \right)}^2}}} > 0,\forall x \in D\)\( \Rightarrow \)Hàm đồng biến trên mỗi khoảng \(( - \infty ; - 2)\) và \(( - 2; + \infty )\) nên hàm số đồng biến trên đoạn \(\left[ {0;3} \right].\)

    Vậy với \(x \in \left[ {0;3} \right] \Rightarrow \left\{ {\begin{array}{*{20}{c}}{\min y = y\left( 0 \right) =  - 1}\\{\max y = y\left( 3 \right) = \frac{7}{5}}\end{array}} \right.\)

    Video hướng dẫn giải chi tiết:
    ATNETWORK

Mã câu hỏi: 24009

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON