-
Câu hỏi:
Tìm giá trị lớn nhất của hàm số \(y = \frac{{{x^2} - 3x}}{{x + 1}}\) trên đoạn [0;3].
- A. 1
- B. 0
- C. 3
- D. 2
Đáp án đúng: B
Xét hàm số \(y = f\left( x \right) = \frac{{{x^2} - 3x}}{{x + 1}}\) trên đoạn [0;3] ta có: \(f'(x)=\frac{x^2+2x-3}{(x+1)^2}; \forall x\in [0;3]\)
Phương trình \(f'(x)=0 \Leftrightarrow \left\{ \begin{array}{l} 0 \le x \le 3\\ {x^2} + 2x - 3 = 0 \end{array} \right. \Leftrightarrow x = 1.\)
Tính giá trị \(f\left( 0 \right) = 0,\,\,f\left( 1 \right) = - 1,\,\,f\left( 3 \right) = 0.\)
Vậy giá trị lớn nhất của hàm số trên đoạn [0;3] là 0.
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ GIÁ TRỊ LỚN NHẤT VÀ NHỎ NHẤT CỦA HÀM SỐ
- Tìm giá trị lớn nhất M của hàm số y=(x^2-3x+3) trên đoạn [-2;1/2]
- Một đường dây điện được nối từ một nhà máy điện trên đất liền ở vị trí A đến một hòn đảo ở vị trí C theo đường gấp khúc ASC (S là một vị trí trên đất liền) như hình vẽ
- Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số f(x)=3^(2sin^2x)+3^(cos^2x)
- Tìm giá trị lớn nhất của hàm số y=cos^4x+sin^2x+1/2 sinxcosx
- Tìm giá trị lớn nhất của biểu thức P = log _2^4x + 12log _2^2x.{log _2}(8/x) biết 1
- Tìm giá trị lớn nhất của hàm số y=*x^2+3)/(x-1) trên đoạn [2;4]
- Biết rằng giá trị lớn nhất của hàm số y={ln^2}x/x trên đoạn [1;e^3] là M=m/e^n.
- Khẳng định nào sau đây đúng về hàm số y=f(x) liên tục, đồng biến trên đoạn [a;b]
- Tìm M, m lần lượt là giá trị lớn nhất giá trị nhỏ nhất của hàm số y = x + sqrt {4 - {x^2}}
- Giá trị nhỏ nhất của hàm số y=ln(x^2-x+)-x trên đoạn [2;4]