-
Câu hỏi:
Cho \(1 < x < 64.\) Tìm giá trị lớn nhất của biểu thức \(P = \log _2^4x + 12\log _2^2x.{\log _2}\frac{8}{x}.\)
- A. 64
- B. 96
- C. 82
- D. 81
Đáp án đúng: D
\(P = \log _2^4x + 12\log _2^2x.{\log _2}\frac{8}{2} = \log _2^4x + 12\log _2^2x.\left( {3 - {{\log }_2}x} \right)\)
\( = \log _2^4x - 12\log _2^3x + 36\log _2^2x\)
Đặt \(t = {\log _2}x\)
Do \(1 < x < 64 \Rightarrow 0 < t < 6\)
Xét hàm số \(P = {t^4} - 12{t^3} + 36{t^2}\) trên \(\left( {0;6} \right)\)
\(P'\left( t \right) = 4{t^3} - 36{t^2} + 72t;P'\left( t \right) = 0 \Leftrightarrow \left( {\begin{array}{*{20}{c}}{t = 0}\\{t = 6}\\{t = 3 \in \left( {0;6} \right)}\end{array}} \right.\)
Bảng biến thiên:
Vậy giá trị lớn nhất của hàm số \(\mathop {\max }\limits_{\left( {0;6} \right)} P = P\left( 3 \right) = 81.\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ GIÁ TRỊ LỚN NHẤT VÀ NHỎ NHẤT CỦA HÀM SỐ
- Tìm giá trị lớn nhất của hàm số y=*x^2+3)/(x-1) trên đoạn [2;4]
- Biết rằng giá trị lớn nhất của hàm số y={ln^2}x/x trên đoạn [1;e^3] là M=m/e^n.
- Khẳng định nào sau đây đúng về hàm số y=f(x) liên tục, đồng biến trên đoạn [a;b]
- Tìm M, m lần lượt là giá trị lớn nhất giá trị nhỏ nhất của hàm số y = x + sqrt {4 - {x^2}}
- Giá trị nhỏ nhất của hàm số y=ln(x^2-x+)-x trên đoạn [2;4]
- Giá trị lớn nhất của biểu thức P=(x-y)^2 là bao nhiêu biết {x^2} + 2xy + 3{y^2} = 4
- Tìm giá trị nhỏ nhất m của hàm số y=x^2+2/x với x>0
- Giá trị lớn nhất của hàm số y = {e^x} trên đoạn [0;pi/2]
- Tìm giá trị nhỏ nhất của hàm số y = {{x^2} - 4x}}/{{2x + 1}} trên đoạn [0;3]
- Trong các hàm số dưới đây, hàm số nào có giá trị nhỏ nhất trên tập xác định?