-
Câu hỏi:
Tìm giá trị lớn nhất của hàm số \(y = {\cos ^4}x + {\sin ^2}x + \frac{1}{2}\sin x\cos x.\)
- A. \({\rm{max y = }}\frac{7}{8}.\)
- B. \({\rm{max y = }}\frac{5}{4}.\)
- C. \({\rm{max y = }}\frac{{17}}{{16}}.\)
- D. \({\rm{max y = }}\frac{{15}}{{16}}.\)
Đáp án đúng: C
Ta có \(y = {\left( {\frac{{1 + \cos 2x}}{2}} \right)^2} + \frac{{1 - \cos 2x}}{2} + \frac{1}{4}\sin 2x\)
\( = \frac{{1 + 2\cos 2x + {{\cos }^2}2x}}{4} + \frac{{1 - \cos 2x}}{2} + \frac{1}{4}\sin 2x\)
\( = \frac{3}{4} + \frac{{{{\cos }^2}2x + \sin 2x}}{4} = \frac{3}{4} + \frac{{1 - {{\sin }^2}2x + \sin 2x}}{4}\)
Xét hàm số \(f(x) = 1 - {\sin ^2}2x + \sin 2x\)
Đặt \(t = \sin 2x,\) ta có hàm số: \(g(t) = 1 - {t^2} + t,t \in \left( { - 1;1} \right)\)
\(\begin{array}{l}g'(t) = - 2t + 1\\g'(t) = 0 \Leftrightarrow t = \frac{1}{2}\end{array}\)
Ta có: \(g( - 1) = - 1;g(1) = 1;g\left( {\frac{1}{2}} \right) = \frac{5}{4}\)
Vậy \(\max g(t) = \max f(x) = \frac{5}{4}\)
Suy ra: \(\max y = \frac{3}{4} + \frac{{\frac{5}{4}}}{4} = \frac{{17}}{{16}}.\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ GIÁ TRỊ LỚN NHẤT VÀ NHỎ NHẤT CỦA HÀM SỐ
- Tìm giá trị lớn nhất của biểu thức P = log _2^4x + 12log _2^2x.{log _2}(8/x) biết 1
- Tìm giá trị lớn nhất của hàm số y=*x^2+3)/(x-1) trên đoạn [2;4]
- Biết rằng giá trị lớn nhất của hàm số y={ln^2}x/x trên đoạn [1;e^3] là M=m/e^n.
- Khẳng định nào sau đây đúng về hàm số y=f(x) liên tục, đồng biến trên đoạn [a;b]
- Tìm M, m lần lượt là giá trị lớn nhất giá trị nhỏ nhất của hàm số y = x + sqrt {4 - {x^2}}
- Giá trị nhỏ nhất của hàm số y=ln(x^2-x+)-x trên đoạn [2;4]
- Giá trị lớn nhất của biểu thức P=(x-y)^2 là bao nhiêu biết {x^2} + 2xy + 3{y^2} = 4
- Tìm giá trị nhỏ nhất m của hàm số y=x^2+2/x với x>0
- Giá trị lớn nhất của hàm số y = {e^x} trên đoạn [0;pi/2]
- Tìm giá trị nhỏ nhất của hàm số y = {{x^2} - 4x}}/{{2x + 1}} trên đoạn [0;3]